Flag Trigonometry> tri6...
question mark

If a=b*cos (2pi)/3=c*cos (4pi)/3, then the value of (ab+bc+ca) is ?

Arnab Mandal , 13 Years ago
Grade 11
anser 3 Answers
Swapnil Saxena

Last Activity: 13 Years ago

Solution :

a=b*cos(2pi)/3 then (3*a)/cos(2pi)=b. Since cos(2pi)=1  ==>(3*a)=b

a=c*cos(4pi)/3 then (3*a)/cos(4pi)=c. Since cos(4pi)=1  ==>(3*a)=c

then (ab+bc+ca)=((3a)(a)+(3a)(3a)+(a)(3a))==>((3a^2)+(9a^2)+(3a^2))=(15*a^2) Ans

Ashwin Muralidharan IIT Madras

Last Activity: 13 Years ago

Hi Arnab,

 

cos(2pi/3) = cos[ pi - pi/3 ] = -cos(pi/3) = -1/2

And cos(4pi/3) = cos(pi + pi/3) = -cos(pi/3) = -1/2

 

So a = -b/2 = -c/2

So b = -2a, c = -2a

 

ab+bc+ca = a(-2a)+(-2a)(-2a)+(-2a)a = 4a^2 - 4a^2 = 0

 

Hence the expression is 0.

 

Hope that helps.

 

Best Regards,

Ashwin (IIT Madras).

Swapnil Saxena

Last Activity: 13 Years ago

Sorry,

I wrongly interpreted th quetion as a=b*(cos (2pi))/3=c*(cos (4pi))/3, then the value of (ab+bc+ca).

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...