Flag Trigonometry> urgent please...
question mark

if sinA+sinB+sinC=0 and cosA+cosB+cosC=0 then find the value of Sin(sqr)A+Sin(sqr)B+Sin(sqr)C.please pleaseplease pleasepleaseplease

Alok Vishwakarma , 13 Years ago
Grade 10
anser 5 Answers
Ashwin Muralidharan IIT Madras

Last Activity: 13 Years ago

Hi Alok,

 

SinA + SinB = -Sinc ---------(1)

CosA + CosB = -CosC ---------(2)

 

Sq and add (1),(2)

2+2Cos(A-B) = 1 ------------(3)

 

Sq and Sub (2),(1)

Cos2A + Cos2B + 2Cos(A+B) = Cos2C

2Cos(A+B)Cos(A-B) + 2Cos(A+B) = Cos2C

or Cos(A+B){2Cos(A-B) + 2} = Cos2C

or Cos(A+B) = Cos2C ----------- [Using (3)]

 

Now SinA+SinB+SinC = 0

Squaring, Sin2A+Sin2B+Sin2C = -2∑SinASinB ----------(4)

 

Now Cos(A+B) = Cos2C

Similarly Cos(B+C) = Cos2A

and Cos(C+A) = Cos2B

So adding these, ∑CosACosB - ∑SinASinB = ∑Cos2A

 

Also Cos(A-B) = -1/2 [from (3)]

similarly Cos(B-C) = -1/2

and Cos(C-A) = -1/2

Adding ∑CosACosB + ∑SinASinB = -3/2

 

So -2∑SinASinB = ∑Cos2A + 3/2

 

Hence from (4) Sin2A+Sin2B+Sin2C = -2∑SinASinB = ∑Cos2A + 3/2

 

Now Cos2A+Cos2B+Cos2C = 2Cos(A+B)Cos(A-B) + Cos2C = -Cos(A+B) + Cos2C = 0 ------ [because Cos(A+B) = Cos2C; and Cos(A-B) = -1/2 which was proved previously]

Hence ∑Cos2A = 0.

 

Hence Sin2A+Sin2B+Sin2C = 3/2.

 

Note that you can have so many results from the above conditions, like

Sin2A+Sin2B+Sin2C = 3/2

∑Cos2A = 0

∑SinASinB = -3/4

∑CosACosB = -3/4

 

Hope this helps.

 

Best Regards,

Ashwin (IIT Madras).

jatinder

Last Activity: 10 Years ago

Cosa+cosb=0=sina+sinb prove that cos2a+cos2b=-cos(a+b)

mycroft holmes

Last Activity: 10 Years ago

Let z1 = cos A + i sin A; z2 = cos B + i sin B; z3 = cos C + i sin C Then z1+z2+z3 = 0 Also if I denote conjugate of z by _z, then we have _z1+_z2+_z3 = 0 But _z1 = 1/z1 (as |z1|^2 = z1 _z1 = 1) Hence 1/z1 + 1/z2 + 1/z3 = 0 or z1z2+z2z3+z3z1 = 0 z1+z2+z3 = 0 so that (z1+z2+z3)^2 = 0 or z1^2+z2^2+z3^2 + 2(z1z2+z2z3+z3z1) = 0 which means z1^2+z2^2+z3^2= 0 Equating real parts, we get cos 2A + cos 2B + cos 2C = 0 or 3- 2(sin^2 A + sin^2 B + sin^2 C) = 0 or sin^2 A+sin^2 B+sin^2 C = 3/2

Parshwa Murdia

Last Activity: 9 Years ago

Let a=cos\alpha +isin\alpha , b =cos\beta +isin\beta , c=cos\gamma +isin\gamma
 
a+b+c=0 => cos\alpha +cos\beta +cos\gamma =0 and sin\alpha +sin\beta +sin\gamma =0
 
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a^{-1}+b^{-1}+c^{-1}= (cos\alpha +cos\beta +cos\gamma) - i (sin\alpha +sin\beta +sin\gamma) = 0
 
 a^{2}+b^{2}+c^{2}= (a+b+c)^{2}-2abc.(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})= 0
Thus, a^{2}+b^{2}+c^{2}= (cos2\alpha +cos2\beta +cos2\gamma)+i(sin2\alpha +sin2\beta +sin2\gamma)=0
 
cos2\alpha +cos2\beta +cos2\gamma=0 and sin2\alpha +sin2\beta +sin2\gamma=0.
 
This can be done using complex numbers.
 
********************************************************************************************************************************

Rishi Sharma

Last Activity: 4 Years ago

Dear Student,
Please find below the solution to your problem.

SinA + SinB = -Sinc ---------(1)
CosA + CosB = -CosC ---------(2)
Sq and add (1),(2)
2+2Cos(A-B) = 1 ------------(3)
Sq and Sub (2),(1)
Cos2A + Cos2B + 2Cos(A+B) = Cos2C
2Cos(A+B)Cos(A-B) + 2Cos(A+B) = Cos2C
or
Cos(A+B){2Cos(A-B) + 2} = Cos2C
or
Cos(A+B) = Cos2C ----------- [Using (3)]
Now SinA+SinB+SinC = 0
Squaring, Sin2A+Sin2B+Sin2C = -2∑SinASinB ----------(4)
Now Cos(A+B) = Cos2C
Similarly Cos(B+C) = Cos2A
and Cos(C+A) = Cos2B
So adding these, ∑CosACosB - ∑SinASinB = ∑Cos2A
Also Cos(A-B) = -1/2 [from (3)]
similarly Cos(B-C) = -1/2
and Cos(C-A) = -1/2
Adding ∑CosACosB + ∑SinASinB = -3/2
So -2∑SinASinB = ∑Cos2A + 3/2
Hence from (4) Sin2A+Sin2B+Sin2C = -2∑SinASinB = ∑Cos2A + 3/2
Now
Cos2A+Cos2B+Cos2C = 2Cos(A+B)Cos(A-B) + Cos2C = -Cos(A+B) + Cos2C = 0 [because Cos(A+B) = Cos2C; and Cos(A-B) = -1/2 which was proved previously]
Hence ∑Cos2A = 0.
Hence Sin2A+Sin2B+Sin2C = 3/2.
Note that you can have so many results from the above conditions, like
Sin2A+Sin2B+Sin2C = 3/2
∑Cos2A = 0
∑SinASinB = -3/4
∑CosACosB = -3/4

Thanks and Regards

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...