Ashwin Muralidharan IIT Madras
Last Activity: 13 Years ago
Hi Aritra,
Let's see how to solve this easily using Complex Numbers:
Let z1=cosx+isinx, z2=cosy+isiny, z3=cosz+isinz.
As Re(z1+z2+z3)=0 and Img(z1+z2+z3)=0,
we have z1+z2+z3=0.
Also as |z|=1 for all complex numbers, 1/z = z' (where ' denotes the conjugate, which is z bar).
so 1/z1 = z1'........ 1/z2 = z2'......... 1/z3 = z3'.
Next cos(x-y)+cos(y-z)+(z-x) = Re(z1/z2 + z2/z3 + z3/z1) = Re (z1z2' + z2z3' + z3z1')------(1).
Re(z) = 1/2(z+z')
So (1) = (1/2)*(z1z2'+z2z3'+z3z1'+z1'z2+z2'z3+z3'z1)
= (1/2)*[z2'(z1+z3) + z3'(z1+z2) + z1'(z2+z3)]
= (1/2)*[z2'(-z2) + z3'(-z3) + z1'(-z1)]
= (1/2)*[-|z2|2-|z3|2-|z1|2]
= -3/2.
And hence proved. Hope that helps.
All the best.
Regards,
Ashwin (IIT Madras).