Flag Trigonometry> proof required...
question mark

if (sin^4x)/a + (cos^4x)/b = (1/(a +b))

Prove that (sin^8x)/a + (cos^8x)/b = (1/(a +b)^3)

sshanbhag_2000@yahoo.com

Subhash Shanbhag , 14 Years ago
Grade 12
anser 6 Answers
Subhash Shanbhag

the question has an error

should be corrected as shown

Q.

if (sin^4x)/a + (cos^4x)/b = (1/(a +b))

Prove that (sin^8x)/a^3 + (cos^8x)/b^3 = (1/(a +b)^3)

Last Activity: 14 Years ago
Shamik Banerjee
cos^4x=(cos^2x)^2=(1-sin^2x)^2=1+ sin^4x-2sin^2x 

=>sin^4x / a +cos^4x / b=1/a+b 


=>sin^4x/a + (1+sin^4x-2sin^2x)/b = 1/(a+b) 

[b*sin^4x + a(sin^4x-2sin^2x+1)] /ab = 1/(a+b) 

=>[(a+b)sin^4x-2a sin^2x+a]/ab = 1/a+b 

=>(a+b)^2 sin^4x - 2a(a+b)sin^2x + a(a+b) =ab 

=>(a+b)^2 sin^4x - 2a(a+b)sin^2x + a^2 


=> [(a+b)sin^2x-a]^2 = 0 
=>(a+b)sin^2x - a = 0 

sin^2x=a/(a+b).........(1) 
(take fourth power of both side) 
=>sin^8x=a^4/(a+b)^4 
(divide by a^3 both side) 
=>sin^8x/a^3=a/(a+b)^4. 
........(2) 
=>cos^2x=1 - sin^2x=1-a/(a+b)=b/(a+b). (from eq 1 substituting value of sin^2x) 

=>cos^2x=b/(a+b)...........(3) 
(take fourth power of both side) 

=>cos^8x=b^4/(a+b)^4 
(divide by b^3 both side) 
=>cos^8x/b^3 =b/(a+b)^4......(4) 

(adding eq 2@4) 
=>sin^8x/a^3 + cos^8x/b^3=a/(a+b)^4 + b/(a+b)^4 =(a+b)/(a+b)^4=1/(a+b)^3 ........proved
Last Activity: 10 Years ago
Sahil Saini
sin^4x /a + cos^4x /b =1/a+ba+b (bsin^4x +acos^4x )=ababsin^4x +b^2sin^4x +abcos^4x +a^2cos^4x =abab (sin^4x +cos^4x )+a^2cos^4x +b^2sin^4x =abab (1-2sin^2x.cos^2x )+a^2cos^4x +b^2sin^4x =aba^2cos^4x +b^2sin^4x -2absin^2x.cos^2x=0(acos^2x+bsin^2x)^2=0acos ^2x=bsin^2xa (1-sin^2x)=bsin^2xa-asin^2x=sin^2xa=(a+b)sin^2xsin^2x=a/a+b (1)similarly......cos^2x=b/a+b (2)take 4th root both side in both eq..then we have.....Sin^8x=a^4/(a+b)^4 (3)cos^8x=b^4/(a+b)^4 (4)now divide eq (3)by a^3 and eq (4) byb^3and then add the eq..after doing that we have .....sin^8x/a^3 +cos^8x/b^3 =a/(a+b)^4 +b/(a+b)^4sin^8x/a^3 +cos^8x/b^3 =1/(a+b)^3hence proved
Last Activity: 8 Years ago
Yash verma
Sin^4x/a +cos^4x/b =1/(a+b)....eq(1)(1-cos^2x)b + cos^4xa =ab/(a+b)b+bcos^4x-2bcos^2x+cos^4ax-ab/(a+b)=0Cos^4x(a+b)-2bcos^2x +b-ab/(a+b)=0Cos^4x(a+b)^2-2b(a+b)cos^2x+b^2=0Cos^2x= (2b(a+b)+-√((4b^2(a+b)^2-4b^2(a+b)^2))/2(a+b)=b/(a+b)------by quadratic equationSo, cos^4x=b^2/(a+b)^2And sin^4xb=ab/(a+b) - cos^4xa by eq(1)so sin^4x=a^2/(a+b)^2Putting sin^8x/b^3+cos^8x/a^3, the values of sin and cos we get,(a+b)/(a+b)^4=1/(a+b)^3
Last Activity: 8 Years ago
Anonymous
We can`t use both lhs and rhs while proving.πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”š
Last Activity: 8 Years ago
Yash Chourasiya
Dear Student

sin4 x/a + cos4 x /b = 1/(a + b)

=> sin4 x/a + (cos2 x)2/b = 1/(a + b)

=>( sin2 x)2/a + (1 - sin2 x)2/b = 1/(a + b)

Let, sin2 x = k

k2/a + (1 - k)2/b = 1/(a + b)

=> [bk2 + a(1 - k)2]/ab = 1/(a+ b)

=> [bk2 +a(1 - 2k + k2)]/ab = 1/(a + b)

=> [bk2 + a - 2ak + ak2]/ab = 1/(a + b)

=> [k2(a + b) - 2ak + a]/ab = 1/(a + b)

=> k2(a + b)2 - 2a(a + b)k + a(a + b) - ab = 0

=> k2(a+ b)2 - 2a(a + b)k + a2 + ab - ab = 0

=> k2(a + b)2 - 2a(a + b)k + a2 = 0

=> {k(a + b)}2 - 2.k(a + b).a + (a)2 = 0

=> [k(a+ b) - a]2 = 0

=> k(a + b) - a = 0

=> k(a + b) = a

=> k = a/(a + b)

Hence,

sin2 x = a/(a+ b)

cos2 x = 1 - a/(a + b) =[a + b - a] /(a + b) = b/(a+ b)

Now,
sin8 x = (sin2 x)4 = [a/(a + b)]4 = a4/(a + b)4

=> sin8 x/a3 = a4/(a + b)4.a3 = a/(a + b)4

Similarly, cos8 x = (cos2 x)4 = [b/(a + b)]4
= b4/(a + b)4

=> cos8 x/b3 = b4/(a + b)4.b3 = b/(a + b)4

Now, sin8 x/a3 + cos8x /b3

= a/(a+ b)4 + b/(a + b)4

= (a + b)/(a+ b)4

= 1/(a + b)3
Hence Proved.

I hope this anwer will help you.
Thanks & Regards
Yash Chourasiya
Last Activity: 5 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments