Flag Trigonometry> proof required...
question mark

if (sin^4x)/a + (cos^4x)/b = (1/(a +b))

Prove that (sin^8x)/a + (cos^8x)/b = (1/(a +b)^3)

sshanbhag_2000@yahoo.com

Subhash Shanbhag , 13 Years ago
Grade 12
anser 6 Answers
Subhash Shanbhag

Last Activity: 13 Years ago

the question has an error

should be corrected as shown

Q.

if (sin^4x)/a + (cos^4x)/b = (1/(a +b))

Prove that (sin^8x)/a^3 + (cos^8x)/b^3 = (1/(a +b)^3)

Shamik Banerjee

Last Activity: 9 Years ago

cos^4x=(cos^2x)^2=(1-sin^2x)^2=1+ sin^4x-2sin^2x 

=>sin^4x / a +cos^4x / b=1/a+b 


=>sin^4x/a + (1+sin^4x-2sin^2x)/b = 1/(a+b) 

[b*sin^4x + a(sin^4x-2sin^2x+1)] /ab = 1/(a+b) 

=>[(a+b)sin^4x-2a sin^2x+a]/ab = 1/a+b 

=>(a+b)^2 sin^4x - 2a(a+b)sin^2x + a(a+b) =ab 

=>(a+b)^2 sin^4x - 2a(a+b)sin^2x + a^2 


=> [(a+b)sin^2x-a]^2 = 0 
=>(a+b)sin^2x - a = 0 

sin^2x=a/(a+b).........(1) 
(take fourth power of both side) 
=>sin^8x=a^4/(a+b)^4 
(divide by a^3 both side) 
=>sin^8x/a^3=a/(a+b)^4. 
........(2) 
=>cos^2x=1 - sin^2x=1-a/(a+b)=b/(a+b). (from eq 1 substituting value of sin^2x) 

=>cos^2x=b/(a+b)...........(3) 
(take fourth power of both side) 

=>cos^8x=b^4/(a+b)^4 
(divide by b^3 both side) 
=>cos^8x/b^3 =b/(a+b)^4......(4) 

(adding eq 2@4) 
=>sin^8x/a^3 + cos^8x/b^3=a/(a+b)^4 + b/(a+b)^4 =(a+b)/(a+b)^4=1/(a+b)^3 ........proved

Sahil Saini

Last Activity: 7 Years ago

sin^4x /a + cos^4x /b =1/a+ba+b (bsin^4x +acos^4x )=ababsin^4x +b^2sin^4x +abcos^4x +a^2cos^4x =abab (sin^4x +cos^4x )+a^2cos^4x +b^2sin^4x =abab (1-2sin^2x.cos^2x )+a^2cos^4x +b^2sin^4x =aba^2cos^4x +b^2sin^4x -2absin^2x.cos^2x=0(acos^2x+bsin^2x)^2=0acos ^2x=bsin^2xa (1-sin^2x)=bsin^2xa-asin^2x=sin^2xa=(a+b)sin^2xsin^2x=a/a+b (1)similarly......cos^2x=b/a+b (2)take 4th root both side in both eq..then we have.....Sin^8x=a^4/(a+b)^4 (3)cos^8x=b^4/(a+b)^4 (4)now divide eq (3)by a^3 and eq (4) byb^3and then add the eq..after doing that we have .....sin^8x/a^3 +cos^8x/b^3 =a/(a+b)^4 +b/(a+b)^4sin^8x/a^3 +cos^8x/b^3 =1/(a+b)^3hence proved

Yash verma

Last Activity: 7 Years ago

Sin^4x/a +cos^4x/b =1/(a+b)....eq(1)(1-cos^2x)b + cos^4xa =ab/(a+b)b+bcos^4x-2bcos^2x+cos^4ax-ab/(a+b)=0Cos^4x(a+b)-2bcos^2x +b-ab/(a+b)=0Cos^4x(a+b)^2-2b(a+b)cos^2x+b^2=0Cos^2x= (2b(a+b)+-√((4b^2(a+b)^2-4b^2(a+b)^2))/2(a+b)=b/(a+b)------by quadratic equationSo, cos^4x=b^2/(a+b)^2And sin^4xb=ab/(a+b) - cos^4xa by eq(1)so sin^4x=a^2/(a+b)^2Putting sin^8x/b^3+cos^8x/a^3, the values of sin and cos we get,(a+b)/(a+b)^4=1/(a+b)^3

Anonymous

Last Activity: 7 Years ago

We can`t use both lhs and rhs while proving.πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”šπŸ”š

Yash Chourasiya

Last Activity: 4 Years ago

Dear Student

sin4 x/a + cos4 x /b = 1/(a + b)

=> sin4 x/a + (cos2 x)2/b = 1/(a + b)

=>( sin2 x)2/a + (1 - sin2 x)2/b = 1/(a + b)

Let, sin2 x = k

k2/a + (1 - k)2/b = 1/(a + b)

=> [bk2 + a(1 - k)2]/ab = 1/(a+ b)

=> [bk2 +a(1 - 2k + k2)]/ab = 1/(a + b)

=> [bk2 + a - 2ak + ak2]/ab = 1/(a + b)

=> [k2(a + b) - 2ak + a]/ab = 1/(a + b)

=> k2(a + b)2 - 2a(a + b)k + a(a + b) - ab = 0

=> k2(a+ b)2 - 2a(a + b)k + a2 + ab - ab = 0

=> k2(a + b)2 - 2a(a + b)k + a2 = 0

=> {k(a + b)}2 - 2.k(a + b).a + (a)2 = 0

=> [k(a+ b) - a]2 = 0

=> k(a + b) - a = 0

=> k(a + b) = a

=> k = a/(a + b)

Hence,

sin2 x = a/(a+ b)

cos2 x = 1 - a/(a + b) =[a + b - a] /(a + b) = b/(a+ b)

Now,
sin8 x = (sin2 x)4 = [a/(a + b)]4 = a4/(a + b)4

=> sin8 x/a3 = a4/(a + b)4.a3 = a/(a + b)4

Similarly, cos8 x = (cos2 x)4 = [b/(a + b)]4
= b4/(a + b)4

=> cos8 x/b3 = b4/(a + b)4.b3 = b/(a + b)4

Now, sin8 x/a3 + cos8x /b3

= a/(a+ b)4 + b/(a + b)4

= (a + b)/(a+ b)4

= 1/(a + b)3
Hence Proved.

I hope this anwer will help you.
Thanks & Regards
Yash Chourasiya

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free