Yash Chourasiya
Last Activity: 4 Years ago
Dear Student
sin4 x/a + cos4 x /b = 1/(a + b)
=> sin4 x/a + (cos2 x)2/b = 1/(a + b)
=>( sin2 x)2/a + (1 - sin2 x)2/b = 1/(a + b)
Let, sin2 x = k
k2/a + (1 - k)2/b = 1/(a + b)
=> [bk2 + a(1 - k)2]/ab = 1/(a+ b)
=> [bk2 +a(1 - 2k + k2)]/ab = 1/(a + b)
=> [bk2 + a - 2ak + ak2]/ab = 1/(a + b)
=> [k2(a + b) - 2ak + a]/ab = 1/(a + b)
=> k2(a + b)2 - 2a(a + b)k + a(a + b) - ab = 0
=> k2(a+ b)2 - 2a(a + b)k + a2 + ab - ab = 0
=> k2(a + b)2 - 2a(a + b)k + a2 = 0
=> {k(a + b)}2 - 2.k(a + b).a + (a)2 = 0
=> [k(a+ b) - a]2 = 0
=> k(a + b) - a = 0
=> k(a + b) = a
=> k = a/(a + b)
Hence,
sin2 x = a/(a+ b)
cos2 x = 1 - a/(a + b) =[a + b - a] /(a + b) = b/(a+ b)
Now,
sin8 x = (sin2 x)4 = [a/(a + b)]4 = a4/(a + b)4
=> sin8 x/a3 = a4/(a + b)4.a3 = a/(a + b)4
Similarly, cos8 x = (cos2 x)4 = [b/(a + b)]4
= b4/(a + b)4
=> cos8 x/b3 = b4/(a + b)4.b3 = b/(a + b)4
Now, sin8 x/a3 + cos8x /b3
= a/(a+ b)4 + b/(a + b)4
= (a + b)/(a+ b)4
= 1/(a + b)3
Hence Proved.
I hope this anwer will help you.
Thanks & Regards
Yash Chourasiya