Flag Trigonometry> question...
question mark

sinx + sin^2x +sin^3x =1cos^6x-4cos^4x + 8 cos^2x = ?

Madhumita S Srodharan , 13 Years ago
Grade 12
anser 3 Answers
vikas askiitian expert

Last Activity: 13 Years ago

Definitions of Trigonometric Functions

Draw a unit circle with center O. Let a central angle with initial side OP and terminal side OQ contain x radians (that is, the arc PQ has length x). Drop a perpendicular from Q to OP meeting it at R. Then OR = cos(x) and RQ = sin(x). If those directed line segments are up or to the right, the lengths are positive. If they are down or to the left, the lengths are negative.

 

Values at special angles:

  x      sin(x)     cos(x)      tan(x)      cot(x)       sec(x)       csc(x)

0 0 1 0 --- 1 ---
/6 1/2 sqrt(3)/2 sqrt(3)/3 sqrt(3) 2 sqrt(3)/3 2
/4 sqrt(2)/2 sqrt(2)/2 1 1 sqrt(2) sqrt(2)
/3 sqrt(3)/2 1/2 sqrt(3) sqrt(3)/3 2 2 sqrt(3)/3
/2 1 0 --- 0 --- 1
2/3 sqrt(3)/2 -1/2 -sqrt(3) -sqrt(3)/3 -2 2 sqrt(3)/3
3/4 sqrt(2)/2 -sqrt(2)/2 -1 -1 -sqrt(2) sqrt(2)
5/6 1/2 -sqrt(3)/2 -sqrt(3)/3 -sqrt(3) -2 sqrt(3)/3 2
0 -1 0 --- -1 ---

More values at special angles:

  x              /10                  /5
sin(x) (-1+sqrt[5])/4 sqrt(10-2 sqrt[5])/4
cos(x) sqrt(10+2 sqrt[5])/4 (1+sqrt[5])/4
tan(x) sqrt(1-2/sqrt[5]) sqrt(5-2 sqrt[5])
cot(x) sqrt(5+2 sqrt[5]) sqrt(1+2/sqrt[5])
sec(x) sqrt(2-2/sqrt[5]) -1+sqrt[5]
csc(x) 1+sqrt[5] sqrt(2+2/sqrt[5])

Use the above values and the identities below to obtain values of trigonometric functions of the following multiples of /10:

 

    3/10 = /2 - /5,
    2/5 = /2 - /10,
    3/5 = /2 + /10,
    7/10 = /2 + /5,
    4/5 = - /5,
    9/10 = - /10.


[Back to Contents]

Bounds

   |sin(x)| <= 1,
|cos(x)| <= 1,
|sec(x)| >= 1,
|csc(x)| >= 1.


[Back to Contents]

Identities

   sec(x) = 1/cos(x),
csc(x) = 1/sin(x),
cot(x) = 1/tan(x),
tan(x) = sin(x)/cos(x),
cot(x) = cos(x)/sin(x).

sin(-x) = -sin(x),
cos(-x) = cos(x),
tan(-x) = -tan(x),
cot(-x) = -cot(x),
sec(-x) = sec(x),
csc(-x) = -csc(x).

sin(/2-x) = cos(x),
cos(/2-x) = sin(x),
tan(/2-x) = cot(x),
cot(/2-x) = tan(x),
sec(/2-x) = csc(x),
csc(/2-x) = sec(x).

sin(/2+x) = cos(x),
cos(/2+x) = -sin(x),
tan(/2+x) = -cot(x),
cot(/2+x) = -tan(x),
sec(/2+x) = -csc(x),
csc(/2+x) = sec(x).

sin(-x) = sin(x),
cos(-x) = -cos(x),
tan(-x) = -tan(x),
cot(-x) = -cot(x),
sec(-x) = -sec(x),
csc(-x) = csc(x).

sin(+x) = -sin(x),
cos(+x) = -cos(x),
tan(+x) = tan(x),
cot(+x) = cot(x),
sec(+x) = -sec(x),
csc(+x) = -csc(x).

sin(2+x) = sin(x),
cos(2+x) = cos(x),
tan(2+x) = tan(x),
cot(2+x) = cot(x),
sec(2+x) = sec(x),
csc(2+x) = csc(x).

sin2(x) + cos2(x) = 1,
tan2(x) + 1 = sec2(x),
1 + cot2(x) = csc2(x).

sin(x+y) = sin(x)cos(y) + cos(x)sin(y),
cos(x+y) = cos(x)cos(y) - sin(x)sin(y),
tan(x+y) = [tan(x)+tan(y)]/[1-tan(x)tan(y)],
cot(x+y) = [cot(x)cot(y)-1]/[cot(x)+cot(y)].

sin(x-y) = sin(x)cos(y) - cos(x)sin(y),
cos(x-y) = cos(x)cos(y) + sin(x)sin(y),
tan(x-y) = [tan(x)-tan(y)]/[1+tan(x)tan(y)],
cot(x-y) = [cot(x)cot(y)+1]/[cot(y)-cot(x)].

sin(2x) = 2 sin(x)cos(x),
cos(2x) = cos2(x) - sin2(x),
= 2 cos2(x) - 1,
= 1 - 2 sin2(x),
tan(2x) = [2 tan(x)]/[1-tan2(x)],
cot(2x) = [cot2(x)-1]/[2 cot(x)].


|sin(x/2)| = sqrt([1-cos(x)]/2),

|cos(x/2)| = sqrt([1+cos(x)]/2),

|tan(x/2)| = sqrt([1-cos(x)]/[1+cos(x)]),

tan(x/2) = [1-cos(x)]/sin(x),
= sin(x)/[1+cos(x)].


sin(3x) = 3 sin(x) - 4 sin3(x),
cos(3x) = 4 cos3(x) - 3 cos(x),
tan(3x) = [3 tan(x)-tan3(x)]/[1-3 tan2(x)].

sin(4x) = 4 sin(x)cos(x)[2 cos2(x)-1],
cos(4x) = 8 cos4(x) - 8 cos2(x) + 1.

sin(5x) = 5 sin(x) - 20 sin3(x) + 16 sin5(x),
cos(5x) = 16 cos5(x) - 20 cos3(x) + 5 cos(x).

sin(6x) = 2 sin(x)cos(x)[16 cos4(x) - 16 cos2(x) + 3],
cos(6x) = 32 cos6(x) - 48 cos4(x) + 18 cos2(x) - 1.

sin(nx) = 2 sin([n-1]x)cos(x) - sin([n-2]x),
cos(nx) = 2 cos([n-1]x)cos(x) - cos([n-2]x),
tan(nx) = (tan[(n-1)x]+tan[x])/(1-tan[(n-1)x]tan[x]).

sin(x)cos(y) = [sin(x+y) + sin(x-y)]/2,
cos(x)sin(y) = [sin(x+y) - sin(x-y)]/2,
cos(x)cos(y) = [cos(x-y) + cos(x+y)]/2,
sin(x)sin(y) = [cos(x-y) - cos(x+y)]/2.

sin(x) + sin(y) = 2 sin[(x+y)/2]cos[(x-y)/2],
sin(x) - sin(y) = 2 cos[(x+y)/2]sin[(x-y)/2],
cos(x) + cos(y) = 2 cos[(x+y)/2]cos[(x-y)/2],
cos(x) - cos(y) = -2 sin[(x+y)/2]sin[(x-y)/2],
tan(x) + tan(y) = sin(x+y)/[cos(x)cos(y)],
tan(x) - tan(y) = sin(x-y)/[cos(x)cos(y)],
cot(x) + cot(y) = sin(x+y)/[sin(x)sin(y)],
cot(x) - cot(y) = -sin(x-y)/[sin(x)sin(y)].

[sin(x)+sin(y)]/[cos(x)+cos(y)] = tan[(x+y)/2],
[sin(x)-sin(y)]/[cos(x)+cos(y)] = tan[(x-y)/2],
[sin(x)+sin(y)]/[cos(x)-cos(y)] = -cot[(x-y)/2],
[sin(x)-sin(y)]/[cos(x)-cos(y)] = -cot[(x+y)/2],
[sin(x)+sin(y)]/[sin(x)-sin(y)] = tan[(x+y)/2]/tan[(x-y)/2].

sin2(x) - sin2(y) = sin(x+y)sin(x-y),
cos2(x) - cos2(y) = -sin(x+y)sin(x-y),
cos2(x) - sin2(y) = cos(x+y)cos(x-y).

sin2(x) = (1 - cos[2x])/2,
cos2(x) = (1 + cos[2x])/2,
tan2(x) = (1 - cos[2x])/(1 + cos[2x]),

sin3(x) = (3 sin[x] - sin[3x])/4,
cos3(x) = (3 cos[x] + cos[3x])/4,

sin4(x) = (3 - 4 cos[2x] + cos[4x])/8,
cos4(x) = (3 + 4 cos[2x] + cos[4x])/8,

sin5(x) = (10 sin[x] - 5 sin[3x] + sin[5x])/16,
cos5(x) = (10 cos[x] + 5 cos[3x] + cos[5x])/16,

sin6(x) = (10 - 15 cos[2x] + 6 cos[4x] - cos[6x])/32,
cos6(x) = (10 + 15 cos[2x] + 6 cos[4x] + cos[6x])/32,

aku -- kumar

Last Activity: 13 Years ago

dear friend,

 

kindly send your address, so that i'll send the solutions by post

Soumyadeep

Last Activity: 7 Years ago

Bro its simple Sin+sin3 = 1-sin2 Sin (1+sin2)=cos2Sin(2-cos2)=cos2Sq bth sides Sin2(4-4cos2+cos4)=cos41-cos2("""""""""""""")=cos44-4cos2+cos4-cos4-4cos2+4cos4-cos6=0Multiply -1cos6-4cos4+8cos2-4=0 :) These sums are very confusing try removing unwanted things instead of adding things.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...