Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
sinx + sin^2x +sin^3x =1
cos^6x-4cos^4x + 8 cos^2x = ?
Draw a unit circle with center O. Let a central angle with initial side OP and terminal side OQ contain x radians (that is, the arc PQ has length x). Drop a perpendicular from Q to OP meeting it at R. Then OR = cos(x) and RQ = sin(x). If those directed line segments are up or to the right, the lengths are positive. If they are down or to the left, the lengths are negative.
Values at special angles:
x sin(x) cos(x) tan(x) cot(x) sec(x) csc(x) 0 0 1 0 --- 1 --- /6 1/2 sqrt(3)/2 sqrt(3)/3 sqrt(3) 2 sqrt(3)/3 2 /4 sqrt(2)/2 sqrt(2)/2 1 1 sqrt(2) sqrt(2) /3 sqrt(3)/2 1/2 sqrt(3) sqrt(3)/3 2 2 sqrt(3)/3 /2 1 0 --- 0 --- 12/3 sqrt(3)/2 -1/2 -sqrt(3) -sqrt(3)/3 -2 2 sqrt(3)/33/4 sqrt(2)/2 -sqrt(2)/2 -1 -1 -sqrt(2) sqrt(2)5/6 1/2 -sqrt(3)/2 -sqrt(3)/3 -sqrt(3) -2 sqrt(3)/3 2 0 -1 0 --- -1 ---
More values at special angles:
x /10 /5sin(x) (-1+sqrt[5])/4 sqrt(10-2 sqrt[5])/4cos(x) sqrt(10+2 sqrt[5])/4 (1+sqrt[5])/4tan(x) sqrt(1-2/sqrt[5]) sqrt(5-2 sqrt[5])cot(x) sqrt(5+2 sqrt[5]) sqrt(1+2/sqrt[5])sec(x) sqrt(2-2/sqrt[5]) -1+sqrt[5]csc(x) 1+sqrt[5] sqrt(2+2/sqrt[5])
Use the above values and the identities below to obtain values of trigonometric functions of the following multiples of /10:
3/10 = /2 - /5,2/5 = /2 - /10,3/5 = /2 + /10,7/10 = /2 + /5,4/5 = - /5,9/10 = - /10.
[Back to Contents]
|sin(x)| <= 1, |cos(x)| <= 1, |sec(x)| >= 1, |csc(x)| >= 1.
sec(x) = 1/cos(x), csc(x) = 1/sin(x), cot(x) = 1/tan(x), tan(x) = sin(x)/cos(x), cot(x) = cos(x)/sin(x). sin(-x) = -sin(x), cos(-x) = cos(x), tan(-x) = -tan(x), cot(-x) = -cot(x), sec(-x) = sec(x), csc(-x) = -csc(x). sin(/2-x) = cos(x), cos(/2-x) = sin(x), tan(/2-x) = cot(x), cot(/2-x) = tan(x), sec(/2-x) = csc(x), csc(/2-x) = sec(x). sin(/2+x) = cos(x), cos(/2+x) = -sin(x), tan(/2+x) = -cot(x), cot(/2+x) = -tan(x), sec(/2+x) = -csc(x), csc(/2+x) = sec(x). sin(-x) = sin(x), cos(-x) = -cos(x), tan(-x) = -tan(x), cot(-x) = -cot(x), sec(-x) = -sec(x), csc(-x) = csc(x). sin(+x) = -sin(x), cos(+x) = -cos(x), tan(+x) = tan(x), cot(+x) = cot(x), sec(+x) = -sec(x), csc(+x) = -csc(x). sin(2+x) = sin(x), cos(2+x) = cos(x), tan(2+x) = tan(x), cot(2+x) = cot(x), sec(2+x) = sec(x), csc(2+x) = csc(x). sin2(x) + cos2(x) = 1, tan2(x) + 1 = sec2(x), 1 + cot2(x) = csc2(x). sin(x+y) = sin(x)cos(y) + cos(x)sin(y), cos(x+y) = cos(x)cos(y) - sin(x)sin(y), tan(x+y) = [tan(x)+tan(y)]/[1-tan(x)tan(y)], cot(x+y) = [cot(x)cot(y)-1]/[cot(x)+cot(y)]. sin(x-y) = sin(x)cos(y) - cos(x)sin(y), cos(x-y) = cos(x)cos(y) + sin(x)sin(y), tan(x-y) = [tan(x)-tan(y)]/[1+tan(x)tan(y)], cot(x-y) = [cot(x)cot(y)+1]/[cot(y)-cot(x)]. sin(2x) = 2 sin(x)cos(x), cos(2x) = cos2(x) - sin2(x), = 2 cos2(x) - 1, = 1 - 2 sin2(x), tan(2x) = [2 tan(x)]/[1-tan2(x)], cot(2x) = [cot2(x)-1]/[2 cot(x)]. |sin(x/2)| = sqrt([1-cos(x)]/2), |cos(x/2)| = sqrt([1+cos(x)]/2), |tan(x/2)| = sqrt([1-cos(x)]/[1+cos(x)]), tan(x/2) = [1-cos(x)]/sin(x), = sin(x)/[1+cos(x)]. sin(3x) = 3 sin(x) - 4 sin3(x), cos(3x) = 4 cos3(x) - 3 cos(x), tan(3x) = [3 tan(x)-tan3(x)]/[1-3 tan2(x)]. sin(4x) = 4 sin(x)cos(x)[2 cos2(x)-1], cos(4x) = 8 cos4(x) - 8 cos2(x) + 1. sin(5x) = 5 sin(x) - 20 sin3(x) + 16 sin5(x), cos(5x) = 16 cos5(x) - 20 cos3(x) + 5 cos(x). sin(6x) = 2 sin(x)cos(x)[16 cos4(x) - 16 cos2(x) + 3], cos(6x) = 32 cos6(x) - 48 cos4(x) + 18 cos2(x) - 1. sin(nx) = 2 sin([n-1]x)cos(x) - sin([n-2]x), cos(nx) = 2 cos([n-1]x)cos(x) - cos([n-2]x), tan(nx) = (tan[(n-1)x]+tan[x])/(1-tan[(n-1)x]tan[x]). sin(x)cos(y) = [sin(x+y) + sin(x-y)]/2, cos(x)sin(y) = [sin(x+y) - sin(x-y)]/2, cos(x)cos(y) = [cos(x-y) + cos(x+y)]/2, sin(x)sin(y) = [cos(x-y) - cos(x+y)]/2. sin(x) + sin(y) = 2 sin[(x+y)/2]cos[(x-y)/2], sin(x) - sin(y) = 2 cos[(x+y)/2]sin[(x-y)/2], cos(x) + cos(y) = 2 cos[(x+y)/2]cos[(x-y)/2], cos(x) - cos(y) = -2 sin[(x+y)/2]sin[(x-y)/2], tan(x) + tan(y) = sin(x+y)/[cos(x)cos(y)], tan(x) - tan(y) = sin(x-y)/[cos(x)cos(y)], cot(x) + cot(y) = sin(x+y)/[sin(x)sin(y)], cot(x) - cot(y) = -sin(x-y)/[sin(x)sin(y)]. [sin(x)+sin(y)]/[cos(x)+cos(y)] = tan[(x+y)/2], [sin(x)-sin(y)]/[cos(x)+cos(y)] = tan[(x-y)/2], [sin(x)+sin(y)]/[cos(x)-cos(y)] = -cot[(x-y)/2], [sin(x)-sin(y)]/[cos(x)-cos(y)] = -cot[(x+y)/2], [sin(x)+sin(y)]/[sin(x)-sin(y)] = tan[(x+y)/2]/tan[(x-y)/2]. sin2(x) - sin2(y) = sin(x+y)sin(x-y), cos2(x) - cos2(y) = -sin(x+y)sin(x-y), cos2(x) - sin2(y) = cos(x+y)cos(x-y). sin2(x) = (1 - cos[2x])/2, cos2(x) = (1 + cos[2x])/2, tan2(x) = (1 - cos[2x])/(1 + cos[2x]), sin3(x) = (3 sin[x] - sin[3x])/4, cos3(x) = (3 cos[x] + cos[3x])/4, sin4(x) = (3 - 4 cos[2x] + cos[4x])/8, cos4(x) = (3 + 4 cos[2x] + cos[4x])/8, sin5(x) = (10 sin[x] - 5 sin[3x] + sin[5x])/16, cos5(x) = (10 cos[x] + 5 cos[3x] + cos[5x])/16, sin6(x) = (10 - 15 cos[2x] + 6 cos[4x] - cos[6x])/32, cos6(x) = (10 + 15 cos[2x] + 6 cos[4x] + cos[6x])/32,
dear friend,
kindly send your address, so that i'll send the solutions by post
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Win Gift vouchers upto Rs 500/-
Register Yourself for a FREE Demo Class by Top IITians & Medical Experts Today !