Last Activity: 13 Years ago
Draw a unit circle with center O. Let a central angle with initial side OP and terminal side OQ contain x radians (that is, the arc PQ has length x). Drop a perpendicular from Q to OP meeting it at R. Then OR = cos(x) and RQ = sin(x). If those directed line segments are up or to the right, the lengths are positive. If they are down or to the left, the lengths are negative.
Values at special angles:
x sin(x) cos(x) tan(x) cot(x) sec(x) csc(x)
0 0 1 0 --- 1 ---
/6 1/2 sqrt(3)/2 sqrt(3)/3 sqrt(3) 2 sqrt(3)/3 2
/4 sqrt(2)/2 sqrt(2)/2 1 1 sqrt(2) sqrt(2)
/3 sqrt(3)/2 1/2 sqrt(3) sqrt(3)/3 2 2 sqrt(3)/3
/2 1 0 --- 0 --- 1
2/3 sqrt(3)/2 -1/2 -sqrt(3) -sqrt(3)/3 -2 2 sqrt(3)/3
3/4 sqrt(2)/2 -sqrt(2)/2 -1 -1 -sqrt(2) sqrt(2)
5/6 1/2 -sqrt(3)/2 -sqrt(3)/3 -sqrt(3) -2 sqrt(3)/3 2
0 -1 0 --- -1 ---
More values at special angles:
x /10 /5
sin(x) (-1+sqrt[5])/4 sqrt(10-2 sqrt[5])/4
cos(x) sqrt(10+2 sqrt[5])/4 (1+sqrt[5])/4
tan(x) sqrt(1-2/sqrt[5]) sqrt(5-2 sqrt[5])
cot(x) sqrt(5+2 sqrt[5]) sqrt(1+2/sqrt[5])
sec(x) sqrt(2-2/sqrt[5]) -1+sqrt[5]
csc(x) 1+sqrt[5] sqrt(2+2/sqrt[5])
Use the above values and the identities below to obtain values of trigonometric functions of the following multiples of /10:
3/10 = /2 - /5,
2/5 = /2 - /10,
3/5 = /2 + /10,
7/10 = /2 + /5,
4/5 = - /5,
9/10 = - /10.
|sin(x)| <= 1,
|cos(x)| <= 1,
|sec(x)| >= 1,
|csc(x)| >= 1.
sec(x) = 1/cos(x),
csc(x) = 1/sin(x),
cot(x) = 1/tan(x),
tan(x) = sin(x)/cos(x),
cot(x) = cos(x)/sin(x).
sin(-x) = -sin(x),
cos(-x) = cos(x),
tan(-x) = -tan(x),
cot(-x) = -cot(x),
sec(-x) = sec(x),
csc(-x) = -csc(x).
sin(/2-x) = cos(x),
cos(/2-x) = sin(x),
tan(/2-x) = cot(x),
cot(/2-x) = tan(x),
sec(/2-x) = csc(x),
csc(/2-x) = sec(x).
sin(/2+x) = cos(x),
cos(/2+x) = -sin(x),
tan(/2+x) = -cot(x),
cot(/2+x) = -tan(x),
sec(/2+x) = -csc(x),
csc(/2+x) = sec(x).
sin(-x) = sin(x),
cos(-x) = -cos(x),
tan(-x) = -tan(x),
cot(-x) = -cot(x),
sec(-x) = -sec(x),
csc(-x) = csc(x).
sin(+x) = -sin(x),
cos(+x) = -cos(x),
tan(+x) = tan(x),
cot(+x) = cot(x),
sec(+x) = -sec(x),
csc(+x) = -csc(x).
sin(2+x) = sin(x),
cos(2+x) = cos(x),
tan(2+x) = tan(x),
cot(2+x) = cot(x),
sec(2+x) = sec(x),
csc(2+x) = csc(x).
sin2(x) + cos2(x) = 1,
tan2(x) + 1 = sec2(x),
1 + cot2(x) = csc2(x).
sin(x+y) = sin(x)cos(y) + cos(x)sin(y),
cos(x+y) = cos(x)cos(y) - sin(x)sin(y),
tan(x+y) = [tan(x)+tan(y)]/[1-tan(x)tan(y)],
cot(x+y) = [cot(x)cot(y)-1]/[cot(x)+cot(y)].
sin(x-y) = sin(x)cos(y) - cos(x)sin(y),
cos(x-y) = cos(x)cos(y) + sin(x)sin(y),
tan(x-y) = [tan(x)-tan(y)]/[1+tan(x)tan(y)],
cot(x-y) = [cot(x)cot(y)+1]/[cot(y)-cot(x)].
sin(2x) = 2 sin(x)cos(x),
cos(2x) = cos2(x) - sin2(x),
= 2 cos2(x) - 1,
= 1 - 2 sin2(x),
tan(2x) = [2 tan(x)]/[1-tan2(x)],
cot(2x) = [cot2(x)-1]/[2 cot(x)].
|sin(x/2)| = sqrt([1-cos(x)]/2),
|cos(x/2)| = sqrt([1+cos(x)]/2),
|tan(x/2)| = sqrt([1-cos(x)]/[1+cos(x)]),
tan(x/2) = [1-cos(x)]/sin(x),
= sin(x)/[1+cos(x)].
sin(3x) = 3 sin(x) - 4 sin3(x),
cos(3x) = 4 cos3(x) - 3 cos(x),
tan(3x) = [3 tan(x)-tan3(x)]/[1-3 tan2(x)].
sin(4x) = 4 sin(x)cos(x)[2 cos2(x)-1],
cos(4x) = 8 cos4(x) - 8 cos2(x) + 1.
sin(5x) = 5 sin(x) - 20 sin3(x) + 16 sin5(x),
cos(5x) = 16 cos5(x) - 20 cos3(x) + 5 cos(x).
sin(6x) = 2 sin(x)cos(x)[16 cos4(x) - 16 cos2(x) + 3],
cos(6x) = 32 cos6(x) - 48 cos4(x) + 18 cos2(x) - 1.
sin(nx) = 2 sin([n-1]x)cos(x) - sin([n-2]x),
cos(nx) = 2 cos([n-1]x)cos(x) - cos([n-2]x),
tan(nx) = (tan[(n-1)x]+tan[x])/(1-tan[(n-1)x]tan[x]).
sin(x)cos(y) = [sin(x+y) + sin(x-y)]/2,
cos(x)sin(y) = [sin(x+y) - sin(x-y)]/2,
cos(x)cos(y) = [cos(x-y) + cos(x+y)]/2,
sin(x)sin(y) = [cos(x-y) - cos(x+y)]/2.
sin(x) + sin(y) = 2 sin[(x+y)/2]cos[(x-y)/2],
sin(x) - sin(y) = 2 cos[(x+y)/2]sin[(x-y)/2],
cos(x) + cos(y) = 2 cos[(x+y)/2]cos[(x-y)/2],
cos(x) - cos(y) = -2 sin[(x+y)/2]sin[(x-y)/2],
tan(x) + tan(y) = sin(x+y)/[cos(x)cos(y)],
tan(x) - tan(y) = sin(x-y)/[cos(x)cos(y)],
cot(x) + cot(y) = sin(x+y)/[sin(x)sin(y)],
cot(x) - cot(y) = -sin(x-y)/[sin(x)sin(y)].
[sin(x)+sin(y)]/[cos(x)+cos(y)] = tan[(x+y)/2],
[sin(x)-sin(y)]/[cos(x)+cos(y)] = tan[(x-y)/2],
[sin(x)+sin(y)]/[cos(x)-cos(y)] = -cot[(x-y)/2],
[sin(x)-sin(y)]/[cos(x)-cos(y)] = -cot[(x+y)/2],
[sin(x)+sin(y)]/[sin(x)-sin(y)] = tan[(x+y)/2]/tan[(x-y)/2].
sin2(x) - sin2(y) = sin(x+y)sin(x-y),
cos2(x) - cos2(y) = -sin(x+y)sin(x-y),
cos2(x) - sin2(y) = cos(x+y)cos(x-y).
sin2(x) = (1 - cos[2x])/2,
cos2(x) = (1 + cos[2x])/2,
tan2(x) = (1 - cos[2x])/(1 + cos[2x]),
sin3(x) = (3 sin[x] - sin[3x])/4,
cos3(x) = (3 cos[x] + cos[3x])/4,
sin4(x) = (3 - 4 cos[2x] + cos[4x])/8,
cos4(x) = (3 + 4 cos[2x] + cos[4x])/8,
sin5(x) = (10 sin[x] - 5 sin[3x] + sin[5x])/16,
cos5(x) = (10 cos[x] + 5 cos[3x] + cos[5x])/16,
sin6(x) = (10 - 15 cos[2x] + 6 cos[4x] - cos[6x])/32,
cos6(x) = (10 + 15 cos[2x] + 6 cos[4x] + cos[6x])/32,
Last Activity: 13 Years ago
dear friend,
kindly send your address, so that i'll send the solutions by post
Last Activity: 7 Years ago
Bro its simple Sin+sin3 = 1-sin2 Sin (1+sin2)=cos2Sin(2-cos2)=cos2Sq bth sides Sin2(4-4cos2+cos4)=cos41-cos2("""""""""""""")=cos44-4cos2+cos4-cos4-4cos2+4cos4-cos6=0Multiply -1cos6-4cos4+8cos2-4=0 :) These sums are very confusing try removing unwanted things instead of adding things.
Prepraring for the competition made easy just by live online class.
Full Live Access
Study Material
Live Doubts Solving
Daily Class Assignments
Get your questions answered by the expert for free
Last Activity: 2 Year ago(s)
Last Activity: 2 Year ago(s)
Last Activity: 2 Year ago(s)
Last Activity: 2 Year ago(s)
Last Activity: 2 Year ago(s)