Learn to Create a Robotic Device Using Arduino in the Free Webinar. Register Now
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Free webinar on Robotics (Block Chain) Learn to create a Robotic Device Using Arduino
30th Jan @ 5:00PM for Grade 1 to 10
tanA/(1-cotA) + cotA/(1-tanA) -secAcosecA =? tanA/(1-cotA) + cotA/(1-tanA) -secAcosecA =?
tanA/(1-cotA) + cotA/(1-tanA) -secAcosecA =?
tanA/(1-cotA) + cotA/(1-tanA) - secAcosecA= (convert all to sine and cosine forms) we get... sin(square)A/cosA(sinA - cosA) - cos(square)A/sinA(sinA - cosA) - 1/sinAcosA = (1/sinA - cosA)(taken as common factor){sin(cube)A - cos(cube)A}/sinAcosA - 1/sinAcosA using (a^3 - b^3) formula we get (1 + sinAcosA)/sinAcosA - 1/sinAcosA = (1 + sinAcosA - 1)/sinAcosA = sinAcosA/sinAcosA = 1
tanA/(1-cotA) + cotA/(1-tanA) - secAcosecA=
(convert all to sine and cosine forms)
we get...
sin(square)A/cosA(sinA - cosA) - cos(square)A/sinA(sinA - cosA) - 1/sinAcosA =
(1/sinA - cosA)(taken as common factor){sin(cube)A - cos(cube)A}/sinAcosA - 1/sinAcosA
using (a^3 - b^3) formula we get
(1 + sinAcosA)/sinAcosA - 1/sinAcosA =
(1 + sinAcosA - 1)/sinAcosA =
sinAcosA/sinAcosA =
1
The above question can be solved as: sin a/cos a(1-cos a/sin a) +cos a/sin a(1-sin a/cos a) - 1/cos a*1/sin a => sin a/cos a(sin a-cos a/sin a) +cos a/sin a(cos a-sin a/cos a) - 1/sin a.cos a =>(sin a.sin a)/cos a(sin a-cos a) + (cos a.cos a)/(cos a-sin a) - 1/sin a.cos a =>(sin a.sin a.sin a) + (-(cos a.cos a.cos a)) -(sin a-cos a)/sin a.cos a(sin a-cos a) =>(sin a.sin a.sin a) - (cos a.cos a.cos a) - (sin a - cos a)/sin a.cos a(sin a-cos a) =>[(sin a-cos a)(sin a.sin a +cos a.cos a+sin a.cos a)] -(sin a - cos a)/sin a.cos a(sin a-cos a) =>(sin a-cos a)[sin a.sin a+cos a.cos a+sin a.cos a - 1]/sin a.cos a(sin a-cos a) =>(sin a-cos a)[1+sin a.cos a-1]/sin a.cos a(sin a-cos a) =>(sin a-cos a)(sin a.cos a)/(sin a.cos a)(sin a-cos a) =>1 ->(ans)
sin a/cos a(1-cos a/sin a) +cos a/sin a(1-sin a/cos a) - 1/cos a*1/sin a
=> sin a/cos a(sin a-cos a/sin a) +cos a/sin a(cos a-sin a/cos a) - 1/sin a.cos a
=>(sin a.sin a)/cos a(sin a-cos a) + (cos a.cos a)/(cos a-sin a) - 1/sin a.cos a
=>(sin a.sin a.sin a) + (-(cos a.cos a.cos a)) -(sin a-cos a)/sin a.cos a(sin a-cos a)
=>(sin a.sin a.sin a) - (cos a.cos a.cos a) - (sin a - cos a)/sin a.cos a(sin a-cos a)
=>[(sin a-cos a)(sin a.sin a +cos a.cos a+sin a.cos a)] -(sin a - cos a)/sin a.cos a(sin a-cos a)
=>(sin a-cos a)[sin a.sin a+cos a.cos a+sin a.cos a - 1]/sin a.cos a(sin a-cos a)
=>(sin a-cos a)[1+sin a.cos a-1]/sin a.cos a(sin a-cos a)
=>(sin a-cos a)(sin a.cos a)/(sin a.cos a)(sin a-cos a)
=>1 ->(ans)
write in terms of cosA and sinA.answer is "one"
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -