Sudheesh Singanamalla
Last Activity: 14 Years ago
Dear Vishnu ,
a^3 = cosecA - sinA
b^3 = secA - cosA
to find : a^2 * b^2 ( a^2 + b^2)
proof :
a^2 = cosec A - sin A / a ;
b^2 = secA - cos A / b ;
substituting in a^2 * b^2 (a^2 + b^2) we get
cosec A - sin A / a * sec A - cos A/b [ cosec A - sin A / a + sec A - cos A /b ]
cos^2 A/ a sin A * sin^2 A / b cos A [ cos^2 A / a sin A + sin^2 A / b cos A ]
sin A . cos A / ab * [ bcos^3 A + a sin^3 A / a*b*sin A* cos A ]
b cos^3 A + a sin^3 A / a^2 * b^2
this is the answer !
Please approve if the answer is correct