Solving from right tan A + 2tan2A + 4tan4A + 8cot8A = tan A + 2tan2A + 4tan4A + 8/tan8A = tan A + 2tan2A + 4tan4A + 8(1-tan24A)/2tan4A = tan A + 2tan2A + [{4tan4A(tan4A)} + 4 (1-tan24A)]/tan4A = tan A + 2tan2A + [4tan24A + 4 - tan24A]/tan4A = tan A + 2tan2A + 4/tan4A
Proceeding as above, we will reach to tan A + 2tan2A + 4tan4A + 8cot8A = 1/tanA = cotA Hence proved.
All the best.
AKASH GOYAL
AskiitiansExpert-IITD
Please feel free to post as many doubts on our discussion forum as you can. We are all IITians and here to help you in your IIT JEE preparation.
Win exciting gifts by answering the questions on Discussion Forum. So help discuss any query on askiitians forum and become an Elite Expert League askiitian.
Now you score 5+15 POINTS by uploading your Pic and Downloading the Askiitians Toolbar respectively : Click here to download the toolbar..
Last Activity: 15 Years ago
vikas askiitian expert
TANA + 2TAN2A + 4TAN4A + 8COT8A = COTA .........1
WE HAVE FORMULA , COTA-TANA=2COT2A
EQ 1 CAN BE WRITTEN AS
2TAN2A + 4TAN4A + 8COT8A = COTA-TANA
2TAN2A + 4TAN4A + 8COT8A = 2COT2A ( BY USING FORMULA )
4TAN4A + 8COT8A = 2COT2A - 2TAN2A
4TAN4A + 8COT8A =4COT4A (BY USING FORMULA)
8COT8A = 4COT4A - 4TAN4A
=8COT8A (BY USING FORMULA )
HENCE PROVED
Last Activity: 15 Years ago
Rishi Sharma
Dear Student, Please find below the solution to your problem.
Solving from right tan A + 2tan2A + 4tan4A + 8cot8A = tan A + 2tan2A + 4tan4A+ 8/tan8A = tan A + 2tan2A + 4tan4A + 8(1-tan24A)/2tan4A = tan A + 2tan2A + [{4tan4A(tan4A)} + 4 (1-tan24A)]/tan4A = tan A + 2tan2A + [4tan24A + 4 - tan24A]/tan4A = tan A + 2tan2A + 4/tan4A Proceeding as above, we will reach to tan A + 2tan2A + 4tan4A + 8cot8A = 1/tanA = cotA
Thanks and Regards
Last Activity: 5 Years ago
LIVE ONLINE CLASSES
Prepraring for the competition made easy just by live online class.