Click to Chat
1800-2000-838
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
prove that: tan3A.tan2A.tanA = tan3A - tan2A - tanA
prove that:
tan3A.tan2A.tanA = tan3A - tan2A - tanA
tan2A can be written as tan(3A-A) now we have tan(a-b)=tana-tanb/1+tanatanb here a =2A & b=A tan2A=tan(3A-A)=tan3A-tanA/1+tan3AtanA tan2A(1+tan3Atan2A) = tan3A-tanA tan2A + tan2Atan3AtanA = tan3A -tanA or tan2Atan3AtanA = tan3A -tanA-tan2A hence proved
tan2A can be written as tan(3A-A)
now we have tan(a-b)=tana-tanb/1+tanatanb
here a =2A & b=A
tan2A=tan(3A-A)=tan3A-tanA/1+tan3AtanA
tan2A(1+tan3Atan2A) = tan3A-tanA
tan2A + tan2Atan3AtanA = tan3A -tanA or
tan2Atan3AtanA = tan3A -tanA-tan2A
hence proved
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -