Create your Smart Home App in the Free Webinar on Home Automation. Register Now
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Free webinar on App Development Learn to create your own Smart Home App
16th Jan @ 5:00PM for Grade 1 to 10
Sit and relax as our customer representative will contact you within 1 business day
prove that: sin 2 (n + 1)A - sin 2 nA = sin(2n + 1)A.sinA
sin2(n+1)A - sin2nA = sin(2n+1)A.sinA we have formula sin2a - sin2b =sin(a-b)sin(a+b) therefore sin2(n+1)A - sin2nA=sin[(n+1)A+nA].sin[(n+1)A-nA] =sin(2n+1)A.sinA =RHS hence proved
sin2(n+1)A - sin2nA = sin(2n+1)A.sinA
we have formula sin2a - sin2b =sin(a-b)sin(a+b)
therefore
sin2(n+1)A - sin2nA=sin[(n+1)A+nA].sin[(n+1)A-nA]
=sin(2n+1)A.sinA =RHS
hence proved
sin^2(n + 1)A - sin^2nA = sin(2n + 1)A.sinASolution:- L.H.S:-sin^2(n + 1)A - sin^2nA = Sin[(n+1)A+nA].Sin[(n+1)A-nA] ["a^2-b^2=(a+b)(a-b)"] =Sin[nA+A+nA].Sin[nA+A-nA] =Sin[A(n+1+n)].SinA =Sin(2n+1)A.SinA=R.H.S Thank You!!!!!!!!!!!!!!!! Wish You Happy learning of trignometry..............
sin^2(n + 1)A - sin^2nA = sin(2n + 1)A.sinASolution:- L.H.S:-sin^2(n + 1)A - sin^2nA = Sin[(n+1)A+nA].Sin[(n+1)A-nA] ["a^2-b^2=(a+b)(a-b)"] =Sin[nA+A+nA].Sin[nA+A-nA] =Sin[A(n+1+n)].SinA =Sin(2n+1)A.SinA=R.H.S
Thank You!!!!!!!!!!!!!!!!
Wish You Happy learning of trignometry..............
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -