Last Activity: 14 Years ago
sin2(n+1)A - sin2nA = sin(2n+1)A.sinA
we have formula sin2a - sin2b =sin(a-b)sin(a+b)
therefore
sin2(n+1)A - sin2nA=sin[(n+1)A+nA].sin[(n+1)A-nA]
=sin(2n+1)A.sinA =RHS
hence proved
sin^2(n + 1)A - sin^2nA = sin(2n + 1)A.sinASolution:- L.H.S:-sin^2(n + 1)A - sin^2nA = Sin[(n+1)A+nA].Sin[(n+1)A-nA] ["a^2-b^2=(a+b)(a-b)"] =Sin[nA+A+nA].Sin[nA+A-nA] =Sin[A(n+1+n)].SinA =Sin(2n+1)A.SinA=R.H.S
Thank You!!!!!!!!!!!!!!!!
Wish You Happy learning of trignometry..............
Prepraring for the competition made easy just by live online class.
Full Live Access
Study Material
Live Doubts Solving
Daily Class Assignments
Get your questions answered by the expert for free
Last Activity: 2 Years ago