1.prove that sinx.siny.sin(x-y) + siny.sinz.sin(y-z) + sinz.sinx.sin(z-x) + sin(x-y).sin(y-z).sin(z-x) = 0
2.f(α,β)= cos4α/cos2β + sin4α/sin2β then prove that f(α,β) = 1
3.cosA = tanB, cosB = tanC and cosC= tanA
then show that sinA = sinB = sinC = 2sin18
1.prove that sinx.siny.sin(x-y) + siny.sinz.sin(y-z) + sinz.sinx.sin(z-x) + sin(x-y).sin(y-z).sin(z-x) = 0
2.f(α,β)= cos4α/cos2β + sin4α/sin2β then prove that f(α,β) = 1
3.cosA = tanB, cosB = tanC and cosC= tanA
then show that sinA = sinB = sinC = 2sin18










