Flag Trigonometry> (13)Let k=1°, then prove that sigma n=0 t...
question mark

(13)Let k=1°, then prove that sigma n=0 to 88 1/cosnk×cos(n+1)k = cosk/sin^2 k(14)let x belongs to R and sigma k=2 to infinity sin(2^k x) = a. Find the value of sigma k=0 to infinity [cot^3 (2^k x) - cot (2^k x)]sin^4(2^k x) in term of 'a'(15) given that 3 sinx +4 coax =5 where x belongs to (0,π/2). Find the value of 2 sinx + coax + 4tanx

Lisha , 6 Years ago
Grade 12th pass
anser 2 Answers
Deepak Kumar Shringi

Last Activity: 6 Years ago

562-2023_Capture.PNG

Aditya Gupta

Last Activity: 6 Years ago

kindly dont ask so many questions in one go, you can instead ask 3 separate questions.
  1. let S= ∑1/cosnk×cos(n+1)k, so S*sink= ∑(sin((n+1)k-nk)/cosnk×cos(n+1)k=∑tan(n+1)k-tan(nk) [using sin(A-B)=sinAcosB-sinBcosA]. the above sum now telescopes, giving us  S*sink= tan89-tan0= sin89/cos89=cos1/sin1. therefore, S= cosk/sin^2k HP
  2.  let us assume that 2^k*x=y. so that ∑ [cot^3 (2^k x) - cot (2^k x)]sin^4(2^k x) =∑ [cos^3(y)/sin^3y – cosy/siny]sin^4y= ∑cos^3ysiny-cosysin^3y=∑cosysiny(cos^2y – sin^2y)= (∑sin4y)/4=(∑sin(2^(k+2)x)/4= (a – sinx – sin2x)/4
  3. (3/5)sinx+(4/5)cosx= 1 let cosa=3/5 so that sina=4/5. implies sinxcosa+sinacosx=1 or sin(x+a)=sin 90deg or x+a= 90deg, so sinx=sin(90 – a)=cosa=3/5 and cosx=4/5 and tanx=3/4 so that 2 sinx + coax + 4tanx= 2+3= 5

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...