Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Explain unusual stability of chloral hydrate.

Explain unusual stability of chloral hydrate.

Grade:11

1 Answers

Komal
askIITians Faculty 747 Points
5 years ago
Chloral hydrate is stable not so much because the geminal diol is stabilized, but because the aldehyde form is destabilized as compared to, say, acetaldehyde (which also hydrates reversibly in acidic aqueous solution). The sp2 hybridized carbon in the aldehyde is very electron deficient, so it reacts with electron-rich nucleophiles (like water). Acetaldehyde, with a methyl group, slightly reduces the electron deficiency by "donating" some electron density. Trichloroacetaldehyde, however, cannot donate nearly as much electron density because the electronegative chlorine atoms are pulling electron density away from the already electron-deficient carbon, making it even more reactive.

Formaldehyde, like trichloroacetaldehyde, exists primarily as the diol form, and even oligomerizes and polymerizes with itself in the absence of water (1,3,5 trioxane and "paraformaldehyde"). Here the issue is not electronegativity (the hydrogen substituents are fairly electron-rich, and energetically favorable to share). Unfortunately, there is a symmetry mismatch in the orbitals involved, so it is impossible for the hydrogen substituents to ease the sp2 carbon's deficiency. Therefore, formaldehyde reacts with water, alcohols, proteins, even itself, to relieve the strain.

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free