The Nernst equation is used to calculate the voltage of an electrochemical cell or to find the concentration of one of the components of the cell. Here is a look at the Nernst equation and an example of how to apply it to solve a problem.
The Nernst Equation
E
cell = E
0cell - (RT/nF)lnQ
Ecell = cell potential under nonstandard conditions (V)
E0cell = cell potential under standard conditions
R = gas constant, which is 8.31 (volt-coulomb)/(mol-K)
T = temperature (K)
n = number of moles of electrons exchanged in the electrochemical reaction (mol)
F = Faraday's constant, 96500 coulombs/mol
Q = reaction quotient, which is the equilibrium expression with initial concentrations rather than equilibrium concentrations
Sometimes it is helpful to express the Nernst equation differently:
Ecell = E0cell - (2.303*RT/nF)logQ
at 298K, Ecell = E0cell - (0.0591 V/n)log Q
LIMITATIONS
In dilute solutions, the Nernst equation can be expressed directly in terms of concentrations (since activity coefficients are close to unity). But at higher concentrations, the true activities of the ions must be used. This complicates the use of the Nernst equation, since estimation of non-ideal activities of ions generally requires experimental measurements.
The Nernst equation also only applies when there is no net current flow through the electrode. The activity of ions at the electrode surface changes when there is current flow, and there are additional overpotentiall and resistive loss terms which contribute to the measured potential.
At very low concentrations of the potential-determining ions, the potential predicted by Nernst equation approaches toward ±∞. This is physically meaningless because, under such conditions, the exchange current density becomes very low, and then other effects tend to take control of the electrochemical behavior of the system.
PLEASE APPROVE MY ANSWER!!