AskiitianExpert Shine
Last Activity: 15 Years ago
Hi
The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external static electric field. The amount of splitting and or shifting is called the Stark splitting or Stark shift. In general one distinguishes first- and second-order Stark effects. The first-order effect is linear in the applied electric field, while the second-order effect is quadratic in the field.
The Stark effect is responsible for the pressure broadening (Stark broadening) of spectral lines by charged particles. When the split/shifted lines appear in absorption, the effect is called the inverse Stark effect. The Stark effect originates from the interaction between a charge distribution (atom or molecule) and an external electric field
The Stark effect is the electric analogue of the Zeeman effect where a spectral line is split into several components due to the presence of a magnetic field.
In most atoms, there exist several electronic configurations that have the same energy, so that transitions between different pairs of configurations correspond to a single spectral line.
The presence of a magnetic field breaks the degeneracy, since it interacts in a different way with electrons with different quantum numbers, slightly modifying their energies. The result is that, where there were several configurations with the same energy, now there are different energies, which give rise to several very close spectral lines.
Without a magnetic field, configurations a, b and c have the same energy, as do d, e and f. The presence of a magnetic field splits the energy levels. Therefore, a line produced by a transition from a, b or c to d, e or f will now be split into several components between different combinations of a, b, c and d, e, f. However, not all transitions will be possible (in the dipole approximation), as governed by the selection rules.