SAGAR SINGH - IIT DELHI
Last Activity: 14 Years ago
Dear sanjana,
The Compton wavelength of a particle, roughly speaking, is the length scale at which relativistic quantum field theory becomes crucial for its accurate description. A simple way to think of it is this. Trying to localize an electron to within less than its Compton wavelength makes its momentum so uncertain that it can have an energy large enough to make an extra electron-positron pair! This is the length scale at which quantum field theory, which describes particle creation, becomes REALLY important for describing electrons. The Compton wavelength of the electron is the characteristic length scale of QED (quantum electrodynamics).
It's easy to guess how big the Compton wavelength is using the knowledge that it depends only on the mass of the electron, relativity and quantum mechanics. Mass has dimension . Length has dimension . Time has dimension .
We are all IITians and here to help you in your IIT JEE preparation.
All the best.
If you like this answer please approve it....
win exciting gifts by answering the questions on Discussion Forum
Sagar Singh
B.Tech IIT Delhi