Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
ONE half cell in a voltaic cell is constructed from a silver wire dipped in a silver nitrate solution of unknown concentration. its other half cell consists of a zinc electrode dipped in 1.0 M solutionof zinc nitrate. a voltage of 1.48 is measured for this cell. calculate concentration of silver nitrate. {standard electrode potentials are given: Zn2+\Zn= -0.76 V . Ag+\Ag = 0.80 V.}
Dear student,
where, for a generalized equation of the form:
The capital letters A, B, M and N in equation represent respectively the reactants and products of a given reaction while the small letters represent the coefficients required to balance the reaction.
At equilibrium, DG = 0 and Qreaction corresponds to the equilibrium constant (Keq) described earlier. In the case of an electrochemical reaction, substitution of the relationships DG = -nFE and D G0 = -nFE0 into the expression of a reaction free energy and division of both sides by -nF gives the Nernst equation for an electrode reaction:
In the case of an electrochemical reaction, substitution of the relationships DG = -nFE and D
Combining constants at 25oC (298.15 K) gives the simpler form of the Nernst equation for an electrode reaction at this standard temperature:
In this equation, the electrode potential (E) would be the actual potential difference across a cell containing this electrode as a half-cell and a standard hydrogen electrode as the other half-cell. Alternatively, the relationship in equation can be used to combine two Nernst equations corresponding to two half-cell reactions into the Nernst equation for a cell reaction:
Register Yourself for a FREE Demo Class by Top IITians & Medical Experts Today !