MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 12th pass
        
q. 12 plese solve it
2 years ago

Answers : (4)

Harsh
29 Points
							
Please post questions properly. Attachment cant be seen properly. Please post right image which is readable.
2 years ago
Piyush Kumar Behera
393 Points
							
yes  the attachment couldnot be seen properly,please again repost the question ,so that it can be read and can be solved.
2 years ago
jagdish singh singh
173 Points
							
\hspace{-0.70 cm}$Let $I = \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}\left(\frac{1}{x}\right)dx\cdots \cdots (1)$\\\\\\ put $x=\frac{1}{t}\;,$ Then $dx = -\frac{1}{t^2}dt$ and changing limits, We get \\\\\\ $I = \int^{\infty}_{0}\frac{t^2+at+1}{1+t^4}\cdot \tan^{-1}(t)dt= \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}(x)dx\cdots (2)$\\\\\\
 
\hspace{-0.70 cm}$$2I = \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\left(\cot^{-1}(x)+\tan^{-1}(x)\right)dx $\\\\\\ $2I=\frac{\pi}{2} \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}dx\;,$ bcz $\cot^{-1}(x)+\tan^{-1}(x)=\frac{\pi}{2},x>0$\\\\\\ So $I = \frac{\pi}{2}\underbrace{\int^{\infty}_{0}\frac{x^2+1}{x^4+1}dx}_{\bf{finite}}+\frac{a\cdot \pi}{8}\int^{\infty}_{0}\frac{(x^2)`}{1+(x^2)^2}dx = \frac{a\cdot \pi^2}{16}$
 
\hspace{-0.70 cm}$So $I = \lim_{a\rightarrow \infty}\frac{1}{a}\int^{\infty}_{0}\frac{1+x^2}{1+x^4}dx+\lim_{a\rightarrow \infty}\frac{a\cdot \pi^2}{16 \cdot a}$\\\\\\ So we get $I = \lim_{a\rightarrow \infty}\int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}\left(\frac{1}{x}\right)dx =\frac{\pi^2}{16}$
2 years ago
jagdish singh singh
173 Points
							
\hspace{-0.70 cm}$Let $I = \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}\left(\frac{1}{x}\right)dx\cdots \cdots (1)$\\\\\\ put $x=\frac{1}{t}\;,$ Then $dx = -\frac{1}{t^2}dt$ and changing limits, We get \\\\\\ $I = \int^{\infty}_{0}\frac{t^2+at+1}{1+t^4}\cdot \tan^{-1}(t)dt= \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}(x)dx\cdots (2)$\\\\\\
 
\hspace{-0.70 cm}$$2I = \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\left(\cot^{-1}(x)+\tan^{-1}(x)\right)dx $\\\\\\ $2I=\frac{\pi}{2} \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}dx\;,$ bcz $\cot^{-1}(x)+\tan^{-1}(x)=\frac{\pi}{2},x>0$\\\\\\ So $I = \frac{\pi}{2}\underbrace{\int^{\infty}_{0}\frac{x^2+1}{x^4+1}dx}_{\bf{finite}}+\frac{a\cdot \pi}{8}\int^{\infty}_{0}\frac{(x^2)`}{1+(x^2)^2}dx = \frac{a\cdot \pi^2}{16}$
 
\hspace{-0.70 cm}$So $I = \lim_{a\rightarrow \infty}\frac{1}{a}\int^{\infty}_{0}\frac{1+x^2}{1+x^4}dx+\lim_{a\rightarrow \infty}\frac{a\cdot \pi^2}{16 \cdot a}$\\\\\\ So we get $I = \lim_{a\rightarrow \infty}\int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}\left(\frac{1}{x}\right)dx =\frac{\pi^2}{16}$
…......................................................................................................
2 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 51 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details