Flag Integral Calculus> q. 12 plese solve it
question mark

q. 12 plese solve it

Mohit Sharma , 8 Years ago
Grade 12th pass
anser 4 Answers
Harsh

Last Activity: 8 Years ago

Please post questions properly. Attachment cant be seen properly. Please post right image which is readable.

Piyush Kumar Behera

Last Activity: 7 Years ago

yes  the attachment couldnot be seen properly,please again repost the question ,so that it can be read and can be solved.

jagdish singh singh

Last Activity: 7 Years ago

\hspace{-0.70 cm}$Let $I = \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}\left(\frac{1}{x}\right)dx\cdots \cdots (1)$\\\\\\ put $x=\frac{1}{t}\;,$ Then $dx = -\frac{1}{t^2}dt$ and changing limits, We get \\\\\\ $I = \int^{\infty}_{0}\frac{t^2+at+1}{1+t^4}\cdot \tan^{-1}(t)dt= \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}(x)dx\cdots (2)$\\\\\\
 
\hspace{-0.70 cm}$$2I = \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\left(\cot^{-1}(x)+\tan^{-1}(x)\right)dx $\\\\\\ $2I=\frac{\pi}{2} \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}dx\;,$ bcz $\cot^{-1}(x)+\tan^{-1}(x)=\frac{\pi}{2},x>0$\\\\\\ So $I = \frac{\pi}{2}\underbrace{\int^{\infty}_{0}\frac{x^2+1}{x^4+1}dx}_{\bf{finite}}+\frac{a\cdot \pi}{8}\int^{\infty}_{0}\frac{(x^2)`}{1+(x^2)^2}dx = \frac{a\cdot \pi^2}{16}$
 
\hspace{-0.70 cm}$So $I = \lim_{a\rightarrow \infty}\frac{1}{a}\int^{\infty}_{0}\frac{1+x^2}{1+x^4}dx+\lim_{a\rightarrow \infty}\frac{a\cdot \pi^2}{16 \cdot a}$\\\\\\ So we get $I = \lim_{a\rightarrow \infty}\int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}\left(\frac{1}{x}\right)dx =\frac{\pi^2}{16}$

jagdish singh singh

Last Activity: 7 Years ago

\hspace{-0.70 cm}$Let $I = \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}\left(\frac{1}{x}\right)dx\cdots \cdots (1)$\\\\\\ put $x=\frac{1}{t}\;,$ Then $dx = -\frac{1}{t^2}dt$ and changing limits, We get \\\\\\ $I = \int^{\infty}_{0}\frac{t^2+at+1}{1+t^4}\cdot \tan^{-1}(t)dt= \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}(x)dx\cdots (2)$\\\\\\
 
\hspace{-0.70 cm}$$2I = \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\left(\cot^{-1}(x)+\tan^{-1}(x)\right)dx $\\\\\\ $2I=\frac{\pi}{2} \int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}dx\;,$ bcz $\cot^{-1}(x)+\tan^{-1}(x)=\frac{\pi}{2},x>0$\\\\\\ So $I = \frac{\pi}{2}\underbrace{\int^{\infty}_{0}\frac{x^2+1}{x^4+1}dx}_{\bf{finite}}+\frac{a\cdot \pi}{8}\int^{\infty}_{0}\frac{(x^2)`}{1+(x^2)^2}dx = \frac{a\cdot \pi^2}{16}$
 
\hspace{-0.70 cm}$So $I = \lim_{a\rightarrow \infty}\frac{1}{a}\int^{\infty}_{0}\frac{1+x^2}{1+x^4}dx+\lim_{a\rightarrow \infty}\frac{a\cdot \pi^2}{16 \cdot a}$\\\\\\ So we get $I = \lim_{a\rightarrow \infty}\int^{\infty}_{0}\frac{x^2+ax+1}{1+x^4}\cdot \tan^{-1}\left(\frac{1}{x}\right)dx =\frac{\pi^2}{16}$
…......................................................................................................

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...