Flag Integral Calculus> Integrate 0 to π/2 (x sin x cos x )/(a²co...
question mark

Integrate 0 to π/2
(x sin x cos x )/(a²cos²x + b²sin²x)²

Ranit Chowdhury , 3 Years ago
Grade 12
anser 1 Answers
Abhishek Singh

Last Activity: 3 Years ago

I think you can see the function is product of an algebraic and trig function indicating By-Parts.(Morover trig function is integrable)
 
Let us see the integral of trig part i.e \frac{\sin x \cos x}{(a^2\cos ^{2}x + b^2\sin^2 x )^2} . We do this by subsituting denominator by t. i.e 
t = a^2\cos ^{2}x + b^2\sin^2 x \Rightarrow dt = 2(b^2-a^2)\sin x\cos x\\ \int \frac{sin x \cdot cos x dx }{(a^2\cos ^{2}x + b^2\sin^2 x )^2} = \frac{1}{2(b^2-a^2))}\int \frac{dt}{t^2} = \frac{-1}{2(b^2-a^2)t} = \frac{-1}{2(b^2-a^2)(a^2cos^2x+b^2sin^2x))}
 
Now using By parts we get  
\begin{align*} \int x\frac{sin x \cdot cos x\cdot dx }{(a^2\cos ^{2}x + b^2\sin^2 x )^2} &= x \left ( \frac{-1}{2\left ( b^2-a^2 \right)\left (a^2\cos ^{2}x + b^2\sin^2 x \right )} \right )-\int \left ( \frac{-1}{2\left ( b^2-a^2 \right)\left (a^2\cos ^{2}x + b^2\sin^2 x \right )} \right ) \\ &= x\frac{-1}{2\left ( b^2-a^2 \right)\left (a^2\cos ^{2}x + b^2\sin^2 x \right )} + \frac{1}{2(b^2-a^2))} \cdot \frac{tan^{-1}(\frac{b}{a}tanx)}{ab} \end{align*}Now we shall solve the second integral  using substitution t = tan
\begin{align*} \int \frac{dx}{a^2\cos ^{2}x + b^2\sin^2 x } &= \int \frac{sec^2x\cdot dx}{a^2 + b^2tan^2x}\\ &= \int \frac{dt}{a^2+b^2t^2} \\ &= \frac{1}{ab}tan^{-1}(bt/a) \\ &= \frac{1}{ab}tan^{-1}(\frac{btanx}{a})) \end{align*}
Now using this we get \begin{align*} \int x\frac{sin x \cdot cos x\cdot dx }{(a^2\cos ^{2}x + b^2\sin^2 x )^2} &= x \left ( \frac{-1}{2\left ( b^2-a^2 \right)\left (a^2\cos ^{2}x + b^2\sin^2 x \right )} \right )-\int \left ( \frac{-1}{2\left ( b^2-a^2 \right)\left (a^2\cos ^{2}x + b^2\sin^2 x \right )} \right ) \\ &= x\frac{-1}{2\left ( b^2-a^2 \right)\left (a^2\cos ^{2}x + b^2\sin^2 x \right )} + \frac{1}{2(b^2-a^2))} \cdot \frac{tan^{-1}(\frac{b}{a}tanx)}{ab} \end{align*}Now Applying limits we get 
\begin{align*} \int_{0}^{\pi/2} x\frac{sin x \cdot cos x\cdot dx }{(a^2\cos ^{2}x + b^2\sin^2 x )^2} &= \frac{-\pi/2}{2\left ( b^2-a^2 \right)\left (b^2 \right )} + \frac{1}{2(b^2-a^2))} \cdot \frac{\pi/2-0}{ab} \\ &= \frac{\pi/2}{2(b^2-a^2)b}\cdot (\frac{1}{a}-\frac{1}{b}) \\ & =\frac{\pi/2}{2(b+a)ab^2} \end{align*}
Hence you get the answer
 
 
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments