Flag Integral Calculus> options -1/24 17/168 1/7 none of these...
question mark

options\t-1/24\t17/168\t1/7\tnone of these

Aditya Kartikeya , 10 Years ago
Grade 10
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
Hello Student,
Please find answer to your question below


\int_{0}^{x}f(t)dt = \int_{1}^{x}t^2f(t)dt + \frac{x^{16}}{8}+\frac{x^6}{3}+a............(1)
f(x) is continuous for all x.

Apply Newton – Leibniz to differentiate integral.
Differentiate both sided, we have

f(x) = -x^2f(x) + \frac{16x^{15}}{8}+\frac{6x^5}{3}
f(x) = -x^2f(x) + 2x^{15}+2x^5
f(x) (1+x^2) = 2x^{15}+2x^5
f(x) = \frac{2x^{15}+2x^5}{1+x^2}
f(t) = \frac{2t^{15}+2t^5}{1+t^2}
\int_{0}^{x}f(t)dt = \int_{0}^{x}\frac{2t^{15}+2t^5}{1+t^2}dt
\int_{0}^{x}f(t)dt = \int_{0}^{x}\frac{2(t^{15}+t^5)}{1+t^2}dt
For the integrand, do long devision
\frac{t^{15}+t^5}{1+t^2}\approx t^{13}-t^{11}+t^9-t^7+t^5
\int_{0}^{x}f(t)dt = \int_{0}^{x}2( t^{13}-t^{11}+t^9-t^7+t^5)dt
\int_{0}^{x}f(t)dt = [2(\frac{t^{14}}{14}-\frac{t^{12}}{12}+\frac{t^{10}}{10}-\frac{t^8}{8}+\frac{t^6}{6})]_{0}^{x}
\int_{0}^{x}f(t)dt = [2(\frac{x^{14}}{14}-\frac{x^{12}}{12}+\frac{x^{10}}{10}-\frac{x^8}{8}+\frac{x^6}{6})]
Similarly, we have
[\int t^2f(t)dt = \int \frac{2t^2(t^{15}+t^5)}{1+t^2}dt]
Doing the long division of integrand, we have
\int t^2f(t)dt = \int [2(t^{15}-t^{13}+t^{11}-t^{9}+t^7)]dt
\int t^2f(t)dt =[2(\frac{t^{16}}{16}-\frac{t^{14}}{14}+\frac{t^{12}}{12}-\frac{t^{10}}{10}+\frac{t^{8}}{8})]+constant
Putting these values in (1), you get the value of ‘a’.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...