Flag Integral Calculus> Let f(x) be a function satisfying f’(x) =...
question mark

Let f(x) be a function satisfying f’(x) = f(x) with f(0) = 1 and g be the function satisfying f(x) + g(x) = x2. The value of the integral 0∫1 f(x)g(x)dx isoptions\te – ½ e2 – 5/2\te – e2 – 3\t½ (e-3)\te – ½ e2- 3/2

Aditya Kartikeya , 10 Years ago
Grade 10
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
Hello Student,
Please find answer to your question below

f'(x) = f(x)
\frac{df(x)}{dx} = f(x)
\int \frac{df(x)}{f(x)} = \int dx
ln[f(x)] = x + c
f(x) = e^{x+c}
f(0) = e^{c}
1 = e^{c}
f(x) = e^{x}
f(x) + g(x) = x^2
e^{x} + g(x) = x^2
g(x) = x^2 - e^{x}
I = \int_{0}^{1}f(x)g(x)dx
I = \int_{0}^{1}e^{x}(x^2-e^{x})dx
I = \int_{0}^{1}x^2e^{x}dx-\int_{0}^{1}e^{2x}dx
I = (x^2e^{x}-2xe^{x}+2e^{x})_{0}^{1} - (\frac{e^{2x}}{2})_{0}^{1}
I = (e-2e+2e)_{0}^{1} - (\frac{e^{2}-1}{2})
I = (e-2e+2e-2) - (\frac{e^{2}-1}{2})
I = e-2 - \frac{e^{2}}{2}+\frac{1}{2}
I = e- \frac{e^{2}}{2}-\frac{3}{2}
Option (4)



Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...