Flag Integral Calculus> integral x/(1+cos^2x) from 0 to pi
question mark

integral x/(1+cos^2x) from 0 to pi

Shadow , 10 Years ago
Grade 11
anser 2 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
I = \int_{0}^{\pi }\frac{x}{1+cos^{2}x}dx
I = \int_{0}^{a }f(x)dx = \int_{0}^{a}f(a-x)dx
I = \int_{0}^{\pi }\frac{\pi -x}{1+cos^{2}(\pi -x)}dx
I = \int_{0}^{\pi }\frac{\pi -x}{1+cos^{2}(x)}dx
I = \int_{0}^{\pi }\frac{\pi}{1+cos^{2}(x)}dx-\int_{0}^{\pi }\frac{x}{1+cos^{2}x}dx
I = \int_{0}^{\pi }\frac{\pi}{1+cos^{2}(x)}dx-I
2I = \int_{0}^{\pi }\frac{\pi}{1+cos^{2}(x)}dx
I = \frac{\pi }{2}\int_{0}^{\pi }\frac{1}{1+cos^{2}(x)}dx
I = \frac{\pi }{2}\int_{0}^{\pi }\frac{sec^{2}(x)}{1+cos^{2}(x)}.\frac{1}{sec^{2}(x)}dx
I = \frac{\pi }{2}\int_{0}^{\pi }\frac{sec^{2}(x)}{1+sec^{2}(x)}dx
I = \frac{\pi }{2}\int_{0}^{\pi }\frac{sec^{2}(x)}{tan^{2}(x)+2}dx
Since sec(x) is not continuous at pi/2, we need to divide the integral
I = \frac{\pi }{2}[\int_{0}^{\pi/2 }\frac{sec^{2}(x)}{tan^{2}(x)+2}dx + \int_{\pi /2}^{\pi }\frac{sec^{2}(x)}{tan^{2}(x)+2}dx]
tan(x) = t
sec^{2}(x)dx = dt
x = 0,\pi \rightarrow t = 0
x =\frac{\pi }{2}^{-} \rightarrow t = \infty
x =\frac{\pi }{2}^{+} \rightarrow t = -\infty
I = \frac{\pi }{2}[\int_{0}^{\infty }\frac{1}{t^{2}+2}dt + \int_{-\infty }^{0}\frac{1}{t^{2}+2}dt]
I = \frac{\pi }{2}[2\int_{0}^{\infty }\frac{1}{t^{2}+2}dt]
I = \frac{\pi }{2}[\int_{0}^{\infty }\frac{1}{(\frac{t}{\sqrt{2}})^{2}+1}dt]
I = \frac{\pi }{2}[\frac{tan^{-1}(\frac{t}{\sqrt{2}})}{\frac{1}{\sqrt{2}}}]_{0}^{\infty }
I = \frac{\pi }{2}[\frac{\pi }{\sqrt{2}}]
I = \frac{\pi ^{2}}{2\sqrt{2}}
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

Kushagra Madhukar

Last Activity: 4 Years ago

Dear student,
Please find the solution to your problem.
 
Now, sec(x) is not continuous at x = π/2, we have to split the integral at the point of discontinuity.
Hence,
 
Thanks and regards,
Kushagra

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...