Flag Integral Calculus> Integral of sinx/(2+sin 2x).................
question mark

Integral of sinx/(2+sin 2x)............................................................................... please answer

Sumit Datta , 8 Years ago
Grade 11
anser 2 Answers
Nishant Vora

Last Activity: 8 Years ago

Hint : convert this to tan (x/2) form and tjhen solve

jagdish singh singh

Last Activity: 8 Years ago

\hspace{-0.70 cm }$Let $I = \int\frac{\sin x}{2+\sin 2x}dx = \frac{1}{2}\int \frac{(\sin x+\cos x)+(\sin x-\cos x)}{2+\sin 2x}dx$\\\\\\ So $I = \frac{1}{2}\int\frac{\sin x+\cos x}{3-(\sin x-\cos x)^2}+\frac{1}{2}\int\frac{\sin x-\cos x}{1+(\sin x+\cos x)^2}dx$\\\\\\ Now put $(\sin x-\cos x)=t\;,$ Then $(\cos x+\sin x)dx = dt$ in $(1)$\\\\ And Put $(\sin x+\cos x)=u\;,$ Then $(\sin x-\cos x)dx = du$ in $(2)$\\\\
 
\hspace{-0.70 cm }$So $I = \frac{1}{2}\int\frac{1}{(\sqrt{3})^2-t^2}dt-\frac{1}{2}\int\frac{1}{1+u^2}du$\\\\\\ So $I = \frac{1}{4\sqrt{3}}\ln\left|\frac{\sqrt{3}+t}{\sqrt{3}-t}\right|-\frac{1}{2}\tan^{-1}(u)+\mathcal{C}$\\\\\\ So $I = \frac{1}{4\sqrt{3}}\ln\left|\frac{\sqrt{3}+(\sin x-\cos x)}{\sqrt{3}-(\sin x-\cos x)}\right|-\frac{1}{2}\tan^{-1}(\sin x+\cos x)+\mathcal{C}$\\\\\\

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...