MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 11
        Integral of sinx/(2+sin 2x)............................................................................... please answer
3 years ago

Answers : (2)

Nishant Vora
IIT Patna
askIITians Faculty
2467 Points
							Hint : convert this to tan (x/2) form and tjhen solve

3 years ago
jagdish singh singh
173 Points
							
\hspace{-0.70 cm }$Let $I = \int\frac{\sin x}{2+\sin 2x}dx = \frac{1}{2}\int \frac{(\sin x+\cos x)+(\sin x-\cos x)}{2+\sin 2x}dx$\\\\\\ So $I = \frac{1}{2}\int\frac{\sin x+\cos x}{3-(\sin x-\cos x)^2}+\frac{1}{2}\int\frac{\sin x-\cos x}{1+(\sin x+\cos x)^2}dx$\\\\\\ Now put $(\sin x-\cos x)=t\;,$ Then $(\cos x+\sin x)dx = dt$ in $(1)$\\\\ And Put $(\sin x+\cos x)=u\;,$ Then $(\sin x-\cos x)dx = du$ in $(2)$\\\\
 
\hspace{-0.70 cm }$So $I = \frac{1}{2}\int\frac{1}{(\sqrt{3})^2-t^2}dt-\frac{1}{2}\int\frac{1}{1+u^2}du$\\\\\\ So $I = \frac{1}{4\sqrt{3}}\ln\left|\frac{\sqrt{3}+t}{\sqrt{3}-t}\right|-\frac{1}{2}\tan^{-1}(u)+\mathcal{C}$\\\\\\ So $I = \frac{1}{4\sqrt{3}}\ln\left|\frac{\sqrt{3}+(\sin x-\cos x)}{\sqrt{3}-(\sin x-\cos x)}\right|-\frac{1}{2}\tan^{-1}(\sin x+\cos x)+\mathcal{C}$\\\\\\
3 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 51 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details