Flag Integral Calculus> If f(x)= (pcosx+qsinx)(x 2 +ax+b) given ∫...
question mark

If f(x)= (pcosx+qsinx)(x2+ax+b)
given ∫f(x)dx from lower limit -π/2 to upper limit π/2 vanishes for all p,q ϵ R, then
the value of π2+4b+a = ….......... ?

Jayant Kishore , 9 Years ago
Grade 12
anser 1 Answers
Arju mukherjee

Last Activity: 3 Years ago

f(x)=(pcosx + qsinx)(x2+\alphax+\beta) [Given]
\int_{\frac{-\pi }{2}}^{\frac{\pi }{2}} f(x) dx =\int_{0}^{\frac{\pi }{2}}[ f(x)+f(-x)] dx
\Rightarrow \int_{0}^{\frac{\pi }{2}} [(p\cos x + q\sin x)(x^{2}+\alpha x+\beta ) +(p\cos x - q\sin x )(x^{2}-\alpha x+\beta )] dx
\Rightarrow 2p\int_{0}^{\frac{\pi }{2}} (x^{2}+\beta )\cos x dx+2\alpha q\int_{0}^{\frac{\pi }{2}} x\sin x dx
\Rightarrow 2\left [p(x^{2}+\beta )\sin x + \left ( q\alpha - 2p \right )\left ( \sin x-x\cos x \right ) \right ]_{0}^{\frac{\pi }{2}}
\Rightarrow 2\left [ p(\frac{\pi ^{2}}{4}+\beta ) + q\alpha - 2p \right ]
\Rightarrow 2\left [ \frac{(\pi ^{2}+4\beta )}{4} + q\alpha - 2p \right ]
\Rightarrow 2\left [\left (\frac{(\pi ^{2}+4\beta )}{4}-2 \right )p + q\alpha \right ]
As it is vanishes for all value of p and q, co-efficient of p and q must be equal to 0.
Hence,
\therefore 2\left (\frac{(\pi ^{2}+4\beta )}{4}-2 \right )=0 \Rightarrow (\pi ^{2}+4\beta )=8
\therefore 2\alpha =0\Rightarrow \alpha =0
Hence,
(\pi ^{2}+4\beta +\alpha )=8
 
 

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free