Flag Integral Calculus> integral...
question mark

int(from (0) to (pi) Ln[(b-cosx) / (a-cosx)]dxa,b>0

baha jaff , 14 Years ago
Grade 12
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
I = \int_{0}^{\pi}ln(\frac{b-cosx}{a-cosx})dx…..............(1)
I = \int_{0}^{\pi}ln(\frac{b-cos(\pi -x)}{a-cos(\pi -x)})dx
I = \int_{0}^{\pi}ln(\frac{b+cos(x)}{a+cos(x)})dx.............(2)
(1) + (2)
2I = \int_{0}^{\pi}ln(\frac{b^{2}-cos^{2}(x)}{a^{2}-cos^{2}(x)})dx
Integration by Parts
2I = (x.ln(\frac{b^{2}-cos^{2}(x)}{a^{2}-cos^{2}(x)}))_{0}^{\pi }-\int_{0}^{\pi}\frac{x.(a^{2}-cos^{2}x)}{b^{2}-cos^{2}x}dx
I = -\frac{1}{2}\int_{0}^{\pi}\frac{x.(a^{2}-cos^{2}x)}{b^{2}-cos^{2}x}dx
I = -\frac{1}{2}\int_{0}^{\pi}\frac{(\pi -x).(a^{2}-cos^{2}(\pi -x))}{b^{2}-cos^{2}(\pi -x)}dx
I = -\frac{1}{2}\int_{0}^{\pi}\frac{(\pi -x).(a^{2}-cos^{2}(x))}{b^{2}-cos^{2}(x)}dx
2I = -\frac{\pi}{2}\int_{0}^{\pi}\frac{(a^{2}-cos^{2}(x))}{b^{2}-cos^{2}(x)}dx
I = -\frac{\pi}{4}\int_{0}^{\pi}\frac{(a^{2}-cos^{2}(x))}{b^{2}-cos^{2}(x)}dx
I = -\frac{\pi}{4}\int_{0}^{\pi}\frac{(a^{2}-cos^{2}(x))}{b^{2}-cos^{2}(x)}.\frac{sec^{4}x}{sec^{4}x}dx
I = -\frac{\pi}{4}\int_{0}^{\pi}\frac{(a^{2}sec^{4}x-sec^{2}x)}{b^{2}sec^{4}x-sec^{2}x}dx
t = tanx
dt = sec^{2}x.dx
I = -\frac{\pi}{4}\int\frac{(a^{2}(t^{2}+1)-1)}{(t^{2}+1).(b^{2}(t^{2}+1)-1)}dt
Simply using the partial fraction rule here, we have
I = -\frac{\pi}{4}.(\frac{(a^{2}-b^{2})tan^{-1}(\frac{bt}{\sqrt{b^{2}-1}})+b\sqrt{b^{2}-1}tan^{-1}t}{b\sqrt{b^{2}-1}})
I = -\frac{\pi}{4}.(\frac{(a^{2}-b^{2})tan^{-1}(\frac{btanx}{\sqrt{b^{2}-1}})+b\sqrt{b^{2}-1}tan^{-1}tanx}{b\sqrt{b^{2}-1}})
I = -\frac{\pi}{4}.(\frac{(a^{2}-b^{2})tan^{-1}(\frac{btanx}{\sqrt{b^{2}-1}})}{b\sqrt{b^{2}-1}})+x)_{0}^{\pi}
I = -\frac{\pi }{4}.\pi
I = -\frac{\pi^{2} }{4}
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...