Flag Electrostatics> Q)A cone made of insulating material has ...
question mark

Q)A cone made of insulating material has a total charge Q spread uniformly overits sloping surface.Calculate the work done in bringing a test charge q from infinity to the apex of the cone.The cone has a slope length L.plz solve it sir

Sibashis ghosh , 9 Years ago
Grade 11
anser 1 Answers
Neeti

Last Activity: 9 Years ago

Was unable to post the link so posting the answer :
 
Put the apex of the cone at the origin. Let it have a base radius R parallel to the y axis, and a height, h along the x axis. This means L = (R^2 + h^2)^(1/2).
We need an area element. Since we can use rotational symmetry about the apex, I will consider the area of a slice of the cone normal to the x axis. This area is 2py(ds) where ds is the infinitesimal arc length of the slice. I will argue that:
dA = 2p(R/h)x(1 + (R/h)^2)^(1/2)dx
If you integrate dA from x=0..h, you obtain pRL, the surface area of a cone, so that works fine.
Now we know that dV = ksdA/r = ks2p(R/h)x(1 + (R/h)^2)^(1/2)/((1 + (R/h)^2)^(1/2)x)dx
= ks2p(R/h)dx, where s represents the surface charge density.
Integrating dV from 0 . . h is simply ks2pR, and since s = Q/(pRL) this means V of the apex = 2kQ/L. The work needed to bring in charge q from infinity is qV = 2kQq/L.
 
Posted by an askiitian expert a year ago. 
 
Feel free to ask any follow up question :)

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...