Join now for JEE/NEET and also prepare for Boards Join now for JEE/NEET and also prepare for Boards. Register Now
Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
Integrate(e^sinx(xcos^3x - sinx)/cos^2x) Integrate(e^sinx(xcos^3x - sinx)/cos^2x)
Integral [e^sinx(xcos^3x-sinx)/cos^2x] dx=integral e^sinx .xcosx dx-integral e^sinx.sinx/cos^2x dx=integral e^sinx.xcosx dx-integrale^sinx.tanxsecx dxlet sinx=t in first integral then on diff w.r. to x we get cosx dx=dt=>integrale^t.sininverset dt-integrale^sinx.tanxsecxdxintegrating by parts Taking sininverset as first function and e^t as second function in first integral and e^sinx as first function and tanxsecx as second function in second integral, we getsininverset.e^t-integral(1/root(1-t^2) .e^t) dt-[e^sinx.secx-integral(e^sinx.cosx.secx )dx]=e^tsininverset-integral(e^t/root(1-t^2))dt-e^sinx.secx+integral(e^sinx)dx=xe^sinx.-integral(e^t/root(1-t^2))dt-e^sinx.secx+integral(e^sinx)dxusing sinx=t and cosxdx=dt, we get=>xe^sinx-integral(e^sinx)dx-e^sinx.secx+integral(e^sinx) dx=xe^sinx-e^sinx.secx +C=(x-secx).e^sinx +CThanks & RegardsRinkoo GuptaAskIITians Faculty
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -