badge image

Enroll For Free Now & Improve Your Performance.

×
User Icon
User Icon
User Icon
User Icon
User Icon

Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 11

                        

Integrate(e^sinx(xcos^3x - sinx)/cos^2x)

6 years ago

Answers : (1)

Rinkoo Gupta
askIITians Faculty
80 Points
							Integral [e^sinx(xcos^3x-sinx)/cos^2x] dx
=integral e^sinx .xcosx dx-integral e^sinx.sinx/cos^2x dx
=integral e^sinx.xcosx dx-integrale^sinx.tanxsecx dx
let sinx=t in first integral then on diff w.r. to x we get cosx dx=dt
=>integrale^t.sininverset dt-integrale^sinx.tanxsecxdx
integrating by parts Taking sininverset as first function and e^t as second function in first integral and e^sinx as first function and tanxsecx as second function in second integral, we get
sininverset.e^t-integral(1/root(1-t^2) .e^t) dt-[e^sinx.secx-integral(e^sinx.cosx.secx )dx]
=e^tsininverset-integral(e^t/root(1-t^2))dt-e^sinx.secx+integral(e^sinx)dx
=xe^sinx.-integral(e^t/root(1-t^2))dt-e^sinx.secx+integral(e^sinx)dx
using sinx=t and cosxdx=dt, we get
=>xe^sinx-integral(e^sinx)dx-e^sinx.secx+integral(e^sinx) dx
=xe^sinx-e^sinx.secx +C
=(x-secx).e^sinx +C

Thanks & Regards
Rinkoo Gupta
AskIITians Faculty
6 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 728 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details