Discuss with colleagues and IITians> Log...
2 AnswersThe logarithm (or log) of a number to a given base is the power to which the base must be raised in order to produce that number.
the logarithm of 1000 to base 10 is 3, because 10 to the power of 3 is 1000.



![\log_b(\sqrt[p]x) = \frac {\log_b x}p. \,](http://upload.wikimedia.org/math/5/6/a/56a5930f2ae7a5992baef464910df49a.png)
Two kinds of logarithms are often used in chemistry: common (or Briggian) logarithms and natural (or Napierian) logarithms. The power to which a base of 10 must be raised to obtain a number is called the common logarithm (log) of the number. The power to which the base e (e = 2.718281828.......) must be raised to obtain a number is called the natural logarithm (ln) of the number.
In simpler terms, my 8th grade math teacher always told me: LOGS ARE EXPONENTS!! What did she mean by that?
The rest of this mini-presentation will concentrate on logarithms to the base 10 (or logs). One use of logs in chemistry involves pH, where pH = -log10 of the hydrogen ion concentration.
FINDING LOGARITHMS
Here are some simple examples of logs.
| Number | Exponential Expression | Logarithm |
|---|---|---|
| 1000 | 103 | 3 |
| 100 | 102 | 2 |
| 10 | 101 | 1 |
| 1 | 100 | 0 |
| 1/10 = 0.1 | 10-1 | -1 |
| 1/100 = 0.01 | 10-2 | -2 |
| 1/1000 = 0.001 | 10-3 | -3 |
To find the logarithm of a number other than a power of 10, you need to use your scientific calculator or pull out a logarithm table (if they still exist). On most calculators, you obtain the log (or ln) of a number by
So, let's look at the logarithm more closely and figure out how to determine the correct number of significant figures it should have.
For any log, the number to the left of the decimal point is called the characteristic, and the number to the right of the decimal point is called the mantissa. The characteristic only locates the decimal point of the number, so it is usually not included when determining the number of significant figures. The mantissa has as many significant figures as the number whose log was found. So in the above examples:
Natural logarithms work in the same way:
Application to pH problems:
pH = -log (hydrogen ion concentration) = -log [H+]
pH = -log [H+] = -log (5.0 x 10-4) = - (-3.30) = 3.30
FINDING ANTILOGARITHMS (also called Inverse Logarithm)
Sometimes we know the logarithm (or ln) of a number and must work backwards to find the number itself. This is called finding the antilogarithm or inverse logarithm of the number. To do this using most simple scientific calculators,
Natural logarithms work in the same way:
Application to pH problems:
pH = -log (hydrogen ion concentration) = -log [H+]
pH = -log [H+] = 13.22
CALCULATIONS INVOLVING LOGARITHMS
Because logarithms are exponents, mathematical operations involving them follow the same rules as those for exponents.
| Common Logarithm | Natural Logarithm |
|---|---|
| log xy = log x + log y | ln xy = ln x + ln y |
| log x/y = log x - log y | ln x/y = ln x - ln y |
| log xy = y log x | ln xy = y ln x |
log = log x1/y = (1/y )log x |
ln = ln x1/y =(1/y)ln x |
QUIZ: Give the correct answer to the correct number of significant figures.
| Question 1 | log 23.0 = ? |
| Question 2 | What is the pH of an aqueous solution in which [H+] = 2.7 x 10-3 M? |
| Question 3 | Find x if log x = 10.23. |
| Question 4 | If the pH of an aqueous solution is 6.52, what is the concentration of the hydrogen ion? |
| Question 5 | log (1.2 x 106)3 = ? |
Answers: (1) 1.362 (2) 2.57 (3) 1.7 x 1010 (4) 3.0 x 10-7 M (5) 18.24

Prepraring for the competition made easy just by live online class.

Full Live Access

Study Material

Live Doubts Solving

Daily Class Assignments

Last Activity: 3 Years ago

Last Activity: 3 Years ago

Last Activity: 3 Years ago

Last Activity: 3 Years ago

Last Activity: 3 Years ago