Rinkoo Gupta
Last Activity: 11 Years ago
al+bm+cn=0
=>cn=-(al+bm)
=>n=-(al+bm)/c
Substituting this value of n in eq fmn+gnl+hlm=0
=>-fm(al+bm)/c-gl(al+bm)/c+hlm=0
=>aflm+bfm^2+agl^2+bglm-chlm=0
=>(af+bg-ch)lm+ag(l)^2+bf(m)^2=0
=>ag(l)^2+bf(m)^2+(af+bg-ch)lm=0
=>ag(l/m)^2+(af+bg-ch)(l/m)+bf=0
If the roots of this eq are l1/m1 and l2/m2 then sum of
roots l1/m1+l2/m2=-(af+bg-ch)/ag
And product of roots l1l2/m1m2=bf/ag
=>a(l1l2)/f =b(m1m2)/g
=>(l1l2)/(f/a)=(m1m2)/(g/b)
Similarly we can show that( m1m2)/(g/b)=(n1n2)/(h/c)
So we can write (l1l2)/(f/a)=(m1m2)/(g/b)=(n1n2)/(h/c) (=k , say)
Since the lines are perpendicular so l1l2+m1m2+n1n2=0
=>k(f/a)+k(g/b)+k(h/c)=0
=>(f/a)+(g/b) +(h/c) =0 This is the required condition.
Thanks & Regards
Rinkoo Gupta
AskIITians Faculty