MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: Upto college level
        the normal to the curve at P(x,y) meets the x axis at G. If the distance of G from the origin is twice the abscissa of P , then the curve is 
a) ellipse
b) parabola
c) ellipse or hyperbola
6 years ago

Answers : (4)

Ajay Verma
askIITians Faculty
33 Points
							solution:

for any curve the equation of normal at ( X1, Y1)

(y- y1) = -1/m (x- X1) {where m = slope of tengent or say dy/dx at (x1, Y1) }

normal meets the X axis at G..
so
( 0 - y1) = -1/m (x- X1)
so x = m*Y1 + X1
so coordinates of G( m*Y1 + X1 , 0)

now ...distance of G from the origin is twice the abscissa of P
so
2X1 = m*Y1 + X1
X1 = m*Y1
m = X1/Y1
dy/dx (at X1, Y1) = X1/Y1

dy/dx = x/y
ydy = x dx
integrate both sides
y2/2 = x2/2 + c

x2/2 - y2/2 = c

so hyperbola..


Thanks and Regards,
Ajay verma,
askIITians faculty,
IIT HYDERABAD
6 years ago
vansh kharbanda
20 Points
							thank you
						
6 years ago
vansh kharbanda
20 Points
							but sir the answer says it can be both ellipse as well as hyperbola, so can u please prove this as an ellipse too.
						
6 years ago
Ayushi Agarwal
36 Points
							The equation is |x1 + my1|=2|x1|So there are 2 equations possible one with positive and the other with negative
						
2 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 53 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details