Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Show that all the chords of the curve 3x 2 -y 2 -2x+4y=0 which subtend a right angle at the origin pass through a fixed point. Find that point.

Show that all the chords of the curve 3x2-y2-2x+4y=0 which subtend a right angle at the origin pass through a fixed point. Find that point. 

Grade:11

2 Answers

Harsh Patodia IIT Roorkee
askIITians Faculty 907 Points
6 years ago
Let y=mx + c be the equation of chord
Homogenize the equation of curve 3x2-y2-2x+4y=0 by putting 1= (y-mx)/c
Equation becomes 3x2-y2-2x(y-mx)/c+4y(y-mx)/c=0
Homogenization gives the equation of pair lines from origin on the given curve
Since the angle subtended at origin by the chord is 900 . Angle between pair of line is 900.
Condition for that is sum of coefficient of x2 and y2 in the homogenized equation is equal to 0.
Hence it will give after simpllication c + m +2=0
On rearranging -2= 1.m + C ….….….…....(1)
Compariing with y = mx + c
(1) passes through a fixed point (1,-2)
RAHUL KUMAR
13 Points
2 years ago
as we can observe that curve is passing through origin.
so find out the slope of tangent at origin.
Differentiate curve eqn w.r.t  “x”
6*x – 2*y*dy/dx – 2 + 4*dy/dx = 0
put (x,y) = (0,0)
slope of tangent = dy/dx = ½
:: since chord is subtending 900 on curve at origin, hence it will be perpendicular to the tangent also.
slope of chord = -2
now we have point (0,0) and slope = -2
eqn of chord :: y=-2*x
y +2*x =0 
to find correct answer, satisfy given points in options
 

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free