Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
        let p(asecθ,btanθ) and q(asecФ,btanФ) where Ф+θ=π/2 be two points on the hyperbola x2/a2-y2/b2=1. if (h,k) is the point of intersection of the normals at P and Q then k is equal toa)a2+b2/ab)-a2+b2/ac)a2+b2/bd)-a2+b2/bplease answer with solution asap.
one year ago

							The equation of parabola is the equation of the normal at a point p(asecθ,btanθ) is given as 	​                                     the equation of the normal at a point q(asecФ,btanФ) is given by             	                                   solving (i) and (ii) we get                                                                                                	                                                                 			                                                           			                                                                                                                  As (h,k) is the point of intersection so

one year ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Analytical Geometry

View all Questions »  ### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 53 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions