ankit singh
Last Activity: 4 Years ago
Let PQ be the normal chord to the parabola y2=4x where a=1
Let (at12,2at1) and (at22,2at2) be the coordinates of P and Q respectively.
i.e., coordinates of P=(t12,2t1)
and coordinates of Q=(t22,2t2)
Equation of normal at point P is
y−2t1=2−2t1(x−t12)
⇒y−2t1=−t1(x−t12) …………(1)
Since Q is a point at the normal, substituting y=2t2 and x=t22
we have,
2t2−2t1=−t1(t22−t12)
⇒2(t2−t1)=−t1(t2+t1)(t2−t1)
⇒2=−t1(t2+t1)……… (2)
It is given that the normal chord subtends a right angle at the vertex A(0,0) i.e., PA⊥AQ
∴ (slope of PA)(slope of AQ)=−1
((t12−0)(2t1−0))(t22−02t2−0)=−1
⇒t122t1⋅t222t2=−1
⇒t1t24=−1
⇒t1t2=−4 ……(2)
From (2),
−t1(t2+t1)=2
⇒−t1t2−t12=2
⇒4−t12=2 [from (3)]
⇒t12=2
⇒t1=2
Substituting value of t1 in (3) we have
t2=2−4
t2=2−42=−22
∴ coordinates of P=((2)2,2(2))=(2,22)
Coordinates of Q=((−22)2,2(−22))=(−8,−42)
∴ Length of normal chord PQ=(8−2)2+(−42−22)2
=62+(−62)2
=36+72
=108
=63.