Flag Analytical Geometry> If a tangent at point (x1,y1) to a curve ...
question mark

If a tangent at point (x1,y1) to a curve x^3+y^3=a^3 meets the curve again at point (x2,y2), how does one prove that x2/x1 + y2/y1 = - 1?

Suvraneel , 7 Years ago
Grade 12
anser 1 Answers
Vikas TU

Last Activity: 7 Years ago

Given x3+y3=a3.
 
The derivative is,
  • dy/dx=−x2 / y                                                                                    (1)
 
Therefore, slope of tangent at (x1,y1) is
  • −x12 / y12                                                                                             (2)
 
The tangent passes through (x2,y2), therefore, slope of the tangent is also given by
  • (y2−y1) / (x2−x1)                                                                                (3)
 
Comparing the two slope equations we get,
(y2−y1) / (x2−x1) = −x12 / y12                                                                        (4.1)

{(y23 −y13) / (x23−x13) }× {(x12+ x1x2 +x22) / (y12+ y1y2 +y22)}= −x12 / y12         (4.2)
 
-{(x12+ x1x2 +x22) / (y12+ y1y2 +y22)}= −x12 / y12                                      (4.3)

x12 y12 +x1x2y12 +x22 y12 = x12 y12 +x12y1y2+x12 y22                                           (4.4)
 
x1x2y12 +x22 y12  = x12y1y2+x12 y22                                                                        (4.5)

x12 y22  - x22 y12  = x1x2y12  -  x12y1y2                                                                    (4.6)

(x1y2−x2y1)(x1y2+x2y1) = x1y1(x2y1−x1y2)                                                          (4.7)
 
x1y2+x2y1=−x1y1                                                                                                     (4.8)

(x2 / x1)+(y2 / y1) = −1                                                                                              (4.9)
 

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free