Learn to Create a Robotic Device Using Arduino in the Free Webinar. Register Now
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Free webinar on Robotics (Block Chain) Learn to create a Robotic Device Using Arduino
30th Jan @ 5:00PM for Grade 1 to 10
A sphere of constant radius r passes through origin and cuts the axes in A,B,C .find the locus of the foot perpendicular from the origin to the plane ABC. A sphere of constant radius r passes through origin and cuts the axes in A,B,C .find the locus of the foot perpendicular from the origin to the plane ABC.
let co-ordinates of A,B,C be respectively (a,0,0),(b,0,0),(c,0,0).Then the equation of plane ABC isx/a+y/b+z/c=1.... [Intercept form]Also equation of sphere OABC isx^2+y^2+z^2-ax-by-cz=0.....[Intercept form ]Now, centre of sphere OABC is (a/2,b/2,c/2) and radius is √a^2/4+b^2/4+c^2/4.By given condition,√a^2/4+b^2/4+c^2/4=ra^2+b^2+c^2=4r^2. .....(1)If F(x1,y1,z1) is the foot of perpendicular from the origin to the plane ABC,then OF is parallel to normal to plane ABC.Therefore,x1-0/(1/a)=y1-0/(1/b)=z1-0/(1/c)x1a=y1b=z1c=k(say)a=k/x1,b=k/y1,c=k/z1. Now,F(x1,y1,z1) lies on plane ABC Therefore, x1/a+y1/b+z1/c=1....(2)Putting values of a,b and c in (1) and (2), we get k^2(1/x1^2+1/y1^2+1/z1^2=4r^2and 1/k(x1^2+y1^2+z1^2)=1Eliminating k from these,we get(x1^2+y1^2+z1^2)^2 (x1^-2+y1^-2+z1^-2)=4r^2.Hence locus of F(x1,y1,z1) is (x^2+y^2+z^2)^2 (x^-2+y^-2+z^-2)=4r^2
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -