Flag Analytical Geometry> parabola...
question mark

I need image of locus of the poles of chords of parabola which subtend a constant angle at the vertex

sania bajaj , 12 Years ago
Grade Upto college level
anser 1 Answers
Jitender Singh

Last Activity: 11 Years ago

Ans:
Let the parabola be:
y^{2} = 4ax
Let t1& t2be parametric points of two focal chords on the parabola. Let (h, k) be the coordinates of the poles.
241-2125_Parabola.gif
The coordinates of the point P & Q of the focal chords on the parabola are:
P(at_{1}^{2}, 2at_{1}), Q(at_{2}^{2}, 2at_{2})
h = at_{1}t_{2}
k = a(t_{1}+t_{2})
Letµ be the angle focal chords subtend at vetex O(0, 0).
Slope of OP:
\frac{2}{t_{1}}
Slope of OQ:
\frac{2}{t_{2}}
Then,
tan\mu = \frac{(\frac{2}{t_{1}}-\frac{2}{t_{2}})}{1+\frac{4}{t_{1}t_{2}}}
tan\mu = \frac{2(t_{2}-t_{1})}{t_{1}t_{2}+4}
tan^{2}\mu(t_{1}t_{2}+4)^{2} = 4.(t_{2}-t_{1})^{2} = 4.((t_{1}+t_{2})^{2}-4t_{1}t_{2})
tan^{2}\mu(\frac{h}{a}+4)^{2} = 4.((\frac{k}{a})^{2}-4.\frac{h}{a})
h\rightarrow x, k\rightarrow y
tan^{2}\mu(\frac{x}{a}+4)^{2} = 4.((\frac{y}{a})^{2}-4.\frac{x}{a})
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments