MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 11
        

find the min area of the triangle formed by the tangents to the ellipse x^2/a^2 +y^2/b^2 =1and the coordinate axis

8 years ago

Answers : (2)

vikas askiitian expert
509 Points
							

eq of tangent to ellipse is given by

y = mx +(-) (a2m2+b2)1/2

it cuts the coordinate axis at  [ 0, (a2m2+b2)1/2  ]     &      [ (a2m2+b2)1/2/m , 0 ]

area formed by these points & origin is

A = (1/2) [ (a2m2+b2)/m ]

now using maxima minima concept

diffenentiating this eq wrt m & after putting it  to 0 we get

m2a2 - b2 = 0

  m = +(-) (b/a)

 

so , area can be

A = (2b2)a/2b = ab                ( at m = b/a)

this is the minimum area of the triangle formed by tangent and coordinate axis....

8 years ago
Avigyan Samanta
30 Points
							
At a parametric point (a cost , b sint)
Equation of the tangent is bx cost + ay sint = ab,
Therefore, X intercept is a/cost and Y intercept is b/sint,
Hence,
 Area  = (ab)/2*sint*cost
         = ab/sin 2t
For minimum area sin2t should be maximum that is 1,
So, Area= ab
2 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 53 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details