A straight line L through the origin meets the lines x+y=1 and x+y=3 at P and Q respectively.Through P and Q two straight lines L1 and L2 are drawn, parallel to 2x-y=5 and 3x+y=5 respectively. Lines L1 and L2 intersect at R. Show that the locus of R, as L varies, is a straight line.
A straight line L through the origin meets the lines x+y=1 and x+y=3 at P and Q respectively.Through P and Q two straight lines L1 and L2 are drawn, parallel to 2x-y=5 and 3x+y=5 respectively. Lines L1 and L2 intersect at R. Show that the locus of R, as L varies, is a straight line.