Flag Algebra> The minimum |z| satisfying |z+1/z| = 2 is...
question mark

The minimum |z| satisfying |z+1/z| = 2 is ...........?

Anshuman Mohanty , 8 Years ago
Grade 12th pass
anser 3 Answers
Vikas TU

Last Activity: 8 Years ago

Put z = x+iy
=> |x + iy + 1/(x + iy)|
=> |[(x+iy)^2 + 1]/(x+iy)|
=>|x^2 – y^2 + 2xyi + 1|/|x+iy|
=> root[(x^2 – y^2 +1)^2 + 1]/root(x^2 + y^2)
Now solve it and compare it.

Anshuman Mohanty

Last Activity: 8 Years ago

Please read the question again. I want to find the minimum |z| 
Please tell me how to use Triangle Inequality in this..

Ajay

Last Activity: 8 Years ago

The answer is -1+\small \sqrt{2} as  shown below......................................................................................
\left| z+\frac { 1 }{ z } \right| \quad =\quad 2\\ \left| z+\frac { \bar { z } }{ { |z| }^{ 2 } } \right| \quad =\quad 2\\ \\ now\quad \left| |z|-\left| \frac { \bar { z } }{ { |z| }^{ 2 } } \right| \right| <=\left| z+\frac { \bar { z } }{ { |z| }^{ 2 } } \right| \\ \quad \quad \quad \quad \left| |z|-\frac { |z| }{ { |z| }^{ 2 } } \right| <=2\\ \quad \quad \quad \quad \quad \quad \left| |z|-\frac { 1 }{ { |z| } } \right| <=2\\ -2\le |z|-\frac { 1 }{ { |z| } } <2\\ taking\quad first\quad inequality\quad -2\le |z|-\frac { 1 }{ { |z| } } \quad will\quad give\quad the\quad minimum\quad value\\ This\quad becomes\quad { |z| }^{ 2 }+2|z|-1\quad \ge \quad 0\\ (|z|-(-1+\sqrt { 2 } )(|z|-(-1-\sqrt { 2 } )\quad \ge \quad 0\\ \\ |z|\ge (-1+\sqrt { 2 } )\\ \\
 
 
 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...