Flag Algebra> find x and y 5x(1+1/x 2 +y 2 )=12 and 5y(...
question mark

findx and y5x(1+1/x2 +y2)=12 and 5y( 1-1/x2+y2)=4

dinesh mishra , 6 Years ago
Grade 12th pass
anser 1 Answers
Arun

Last Activity: 6 Years ago

Dear Dinesh
 

5x(1 + ¹/x² + y²) = 12------(I),

5y(1 — ¹/x² + y²) = 4--------(II).

MAKING THE COEFFICIENT, 5 THE SUBJECT OF THE FORMULA:

From eqn I,

5 = ¹²/x(x² +y²/x² +y²+1) -----III.

From eqnII,

5 = ⁴/y(x² + y²/x² + y²—1)----IV.

SUBST. INTEGER (5) FROM Eqn III INTO Eqn IV.

I.e

¹²/x(x²+y²/x²+y²+1) = ⁴/y(x²+y²/x²+y² —1) ,

OR

12/x ÷ 4/y = x²+y²/x²+y²-1 ÷ x²+y²/x²+y² + 1

OR

12/x ( y/4) = x² + y²/x²+y²—1 (x²+y²+1/x² + y²).

This reduces to:

3y/x = x² + y² + 1/x²+y²—1,

as x² + y² cancels each other.

Now, by comparison,

3y = x² + y² + 1------------(V),

x = x² + y² — 1-----------(VI).

SUBTRACT Eqn V & VI:

3y — x = 2 , or

x = 3y — 2 -------VII.

ALSO, ADD Eqn V & VI:

3y + x = 2x² + 2y² ---------VIII.

SUBST. x from Eqn VII into

Eqn VIII:

3y + 3y — 2 = 2(3y — 2)² + 2y²,

6y — 2 = 2(9y² —12y + 4) + 2y²,

6y — 2 = 18y² — 24y + 8 + 2y²,

6y — 2 = 20y² — 24y + 8.

Thus, 20y² — 30y + 10 = 0,

Or 2y² — 3y + 1 = 0.

Factorizing:

(2y — 1)(y — 1) = 0,

and y = ½, 0r 1.

TESTING FOR REAL

SOLUTIONS:

Subst. y = ½ in EqnII above, gives :

32x² — 20x² + 23 = 0;

12x² = — 23;

x² = —23/12;

x = √(—23/12) , Complex number

Also, Subst. y = 1 in EqnII above,

5(1)[1 — ¹/x² + 1] = 4;

5[x² + 1 — 1/x² + 1] = 4;

5(x²/x² + 1) = 4;

5x² = 4x² + 4;

5x² — 4x² — 4 = 0;

x² — 4 = 0;

x² = 4, or x = √4 = 2.

Hence, solutions are

x = 2, y = 1.

 

 

Regards

Arun (askIITians forum expert)

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...