Last Activity: 5 Years ago
Last Activity: 2 Years ago
(12)+(12+22)+...+(12+22+...+n2)=n(n+1)2(n+2)12
We will use the following known sums (each of which can be proven via induction):
With those:
(12)+(12+22)+...+(12+22+...+n2)
=n∑i=1(12+22+...+i2)=n∑i=1i∑j=1j2=n∑i=1i(i+1)(2i+1)6=n∑i=12i3+3i2+i6=n∑i=113i3+n∑j=112j2+n∑k=116k=13n∑i=1i3+12n∑j=1j2+16n∑k=1k=13(n2(n+1)24)+12(n(n+1)(2n+1)6)+16(n(n+1)2)=n2(n+1)212+n(n+1)(2n+1)12+n(n+1)12=n(n+1)[n(n+1)+(2n+1)+1]12=n(n+1)(n2+3n+2)12=n(n+1)2(n+2)12(12)+(12+22)+...+(12+22+...+n2)=n(n+1)2(n+2)12Explanation:We will use the following known sums (each of which can be proven via induction): n∑i=1i=n(n+1)2 n∑i=1i2=n(n+1)(2n+1)6 n∑i=1(i3)=n2(n+1)24With those:(12)+(12+22)+...+(12+22+...+n2)=n∑i=1(12+22+...+i2)=n∑i=1i∑j=1j2=n∑i=1i(i+1)(2i+1)6=n∑i=12i3+3i2+i6=n∑i=113i3+n∑j=112j2+n∑k=116k=13n∑i=1i3+12n∑j=1j2+16n∑k=1k=13(n2(n+1)24)+12(n(n+1)(2n+1)6)+16(n(n+1)2)=n2(n+1)212+n(n+1)(2n+1)12+n(n+1)12=n(n+1)[n(n+1)+(2n+1)+1]12=n(n+1)(n2+3n+2)12=n(n+1)2(n+2)12
=n∑i=1(12+22+...+i2)
=n∑i=1i∑j=1j2
=n∑i=1i(i+1)(2i+1)6
=n∑i=12i3+3i2+i6
=n∑i=113i3+n∑j=112j2+n∑k=116k
=13n∑i=1i3+12n∑j=1j2+16n∑k=1k
=13(n2(n+1)24)+12(n(n+1)(2n+1)6)+16(n(n+1)2)
=n2(n+1)212+n(n+1)(2n+1)12+n(n+1)12
=n(n+1)[n(n+1)+(2n+1)+1]12
=n(n+1)(n2+3n+2)12
=n(n+1)2(n+2)12
=n∑i=1(12+22+...+i2)=n∑i=1i∑j=1j2=n∑i=1i(i+1)(2i+1)6=n∑i=12i3+3i2+i6=n∑i=113i3+n∑j=112j2+n∑k=116k=13n∑i=1i3+12n∑j=1j2+16n∑k=1k=13(n2(n+1)24)+12(n(n+1)(2n+1)6)+16(n(n+1)2)=n2(n+1)212+n(n+1)(2n+1)12+n(n+1)12=n(n+1)[n(n+1)+(2n+1)+1]12=n(n+1)(n2+3n+2)12=n(n+1)2(n+2)12
Prepraring for the competition made easy just by live online class.
Full Live Access
Study Material
Live Doubts Solving
Daily Class Assignments
Get your questions answered by the expert for free
Last Activity: 10 Month ago(s)
Last Activity: 1 Year ago(s)
Last Activity: 2 Year ago(s)