Flag Algebra> Find the sum of n terms 1 square +( 1 squ...
question mark

Find the sum of n terms 1 square +( 1 square2 suare) +( 1square +2 square + 3 square) +

Deepika k gowda , 5 Years ago
Grade 11
anser 2 Answers
Vikas TU

Last Activity: 5 Years ago

Dear student 
Please folow the below link to get your ans 
Good Luck 

Onkar mamidwar

Last Activity: 2 Years ago

(12)+(12+22)+...+(12+22+...+n2)=n(n+1)2(n+2)12

Explanation:

We will use the following known sums (each of which can be proven via induction):

  • ni=1i=n(n+1)2
  • ni=1i2=n(n+1)(2n+1)6
  • ni=1(i3)=n2(n+1)24

With those:

(12)+(12+22)+...+(12+22+...+n2)

=ni=1(12+22+...+i2)

=ni=1ij=1j2

=ni=1i(i+1)(2i+1)6

=ni=12i3+3i2+i6

=ni=113i3+nj=112j2+nk=116k

=13ni=1i3+12nj=1j2+16nk=1k

=13(n2(n+1)24)+12(n(n+1)(2n+1)6)+16(n(n+1)2)

=n2(n+1)212+n(n+1)(2n+1)12+n(n+1)12

=n(n+1)[n(n+1)+(2n+1)+1]12

=n(n+1)(n2+3n+2)12

=n(n+1)2(n+2)12

(12)+(12+22)+...+(12+22+...+n2)=n(n+1)2(n+2)12

Explanation:

We will use the following known sums (each of which can be proven via induction):

  • ni=1i=n(n+1)2
  • ni=1i2=n(n+1)(2n+1)6
  • ni=1(i3)=n2(n+1)24

With those:

(12)+(12+22)+...+(12+22+...+n2)

=ni=1(12+22+...+i2)

=ni=1ij=1j2

=ni=1i(i+1)(2i+1)6

=ni=12i3+3i2+i6

=ni=113i3+nj=112j2+nk=116k

=13ni=1i3+12nj=1j2+16nk=1k

=13(n2(n+1)24)+12(n(n+1)(2n+1)6)+16(n(n+1)2)

=n2(n+1)212+n(n+1)(2n+1)12+n(n+1)12

=n(n+1)[n(n+1)+(2n+1)+1]12

=n(n+1)(n2+3n+2)12

=n(n+1)2(n+2)12

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...