Flag 9 grade maths> A cone a hemisphere and a cylinder stand ...
question mark

A cone a hemisphere and a cylinder stand on equal bases and have the same height. Find the ratio of their volumes

Gopika Babu , 8 Years ago
Grade 9
anser 1 Answers
Manan Jain

Last Activity: 8 Years ago

We know that all the three figures-cone,hemisphere and cylinder are on same base. It means that they will have the same base radius.
so, let the common radius of all figures be ‘r’.
also they have same height.
so, let the common heights of the three figures be ‘h’.
 
Now, volume of hemisphere=\frac{2}{3}\pi r^{3}
                 volume of cylinder=\pir2h
                 volume of cone=\frac{1}{3}\pi r^{2}h
 
so, volume of cone:volume of cylinder:volume of hemisphere=\frac{2}{3}\pi r^{3}:\pir2h:\frac{1}{3}\pi r^{2}h
 
{{(Cancel out the common values)}}
                                                                                         =\frac{2}{3}r\pi×r×r:\pir×r×h:\frac{1}{3}\pir×r×h
                                                                                         =\frac{2}{3}r:h:\frac{1}{3}h
we know that in a hemisphere, radius=height of hemisphere,
so,
                                                                                          =\frac{2}{3}h:h:\frac{1}{3}h
                                                                                          =\frac{2}{3}:1:\frac{1}{3} 
multiply the ratio by 3,we get
                                                                                          =2:3:1
                                                              Thus, the answer is 2:3:1
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments