Parth Shrivastava
Last Activity: 13 Years ago
This can be integrated by integration by parts
let 1/x=d v
then logx dx =v on integrating
let tanx=u
sec^2xdx=du
∫ udv = uv- ∫ vdu = logxtanx- ∫logxsec^2xdx
so ∫tanx/x dx= logxtanx- ∫ logx sec^2xdx------ (1)
now consider the second term in the RHS
∫ logx sec^2x dx, again applying by parts technique
let u= logx , du= 1/xdx ∫sec^2x dx= dv , v= tanx on integrating
so this becomes logxtanx- ∫tanx/x dx
substituting in eqn (1)
integral tanx/x dx= logxtanx+logxtan- ∫tanx/xdx
2 ∫tanx/x dx= 2logxtanx
so ∫tanx/x =logx tanx+c
Ans