Chapter 5: Factorization of Algebraic Expressions Exercise – 5.1
Question: 1
Find the value
x3 + x − 3x2 − 3
Solution:
Taking x common in x3 + x
= x(x2 + 1) − 3x2 − 3
Taking - 3 common in − 3x2 − 3
= x(x2 + 1) − 3(x2 + 1)
Now, we take (x2 + 1) common
= (x2 + 1) (x - 3)
∴ x3 + x − 3y2 − 3 = (x2 + 1)(x - 3)
Question: 2
Find the value
a(a + b)3 − 3a2b(a + b)
Solution:
Taking (a + b) common in the two terms
= (a + b){a(a + b)² - 3a²b}
Now, using (a + b)2= a2 + b2 + 2ab
= (a + b){a(a2 + b2 + 2ab) − 3a2b}
= (a + b){a3 + ab2 + 2a2b − 3a2b}
= (a + b){a3 + ab2 − a2b}
= (a + b)p{a2 + b2 − ab}
= p(a + b)(a2 + b2 − ab)
∴ a(a + b)3 − 3a2b(a + b)
= a(a + b)(a2 + b2 − ab)
Question: 3
Find the value
x(x3 − y3) + 3xy(x − y)
Solution:
Elaborating x3 − y3 using the identity
x3 − y3 = (x − y)(x2 + xy + y2)
= x(x − y)(x2 + xy + y2) + 3xy(x − y)
Taking common x(x - y) in both the terms
= x(x − y)(x2 + xy + y2 + 3y)
∴ x(x3 − y3) + 3xy(x − y)
= x(x − y)(x2 + xy + y2 + 3y)
Question: 4
Find the value
a2x2 + (ax2 + 1)x + a
Solution:
We multiply x(ax2 + 1) = ax3 + x
= a2x2 + ax3 + x + a
Taking common ax2 in (a2x2 + ax3) and 1 in (x + a)
= ax2(a + x) + 1(x + a)
=ax2(a + x) + 1(a + x)
Taking (a + x) common in both the terms
= (a + x)(ax2 + 1)
∴ a2x2 + (ax2 + 1)x + a = (a + x)(ax2 + 1)
Question: 5
Find the value
x2 + y − xy − x
Solution:
On rearranging
x2 − xy − x + y
Taking x common in the (x2 − xy) and -1 in(-x + y)
= x(x - y) - 1 (x - y)
Taking (x - y) common in the terms
= (x - y)(x - 1)
∴ x2 + y − xy − x = (x - y)(x - 1)
Question: 6
Find the value
x3 − 2x2b + 3xy2 − 6y3
Solution:
Taking x2 common in (x3 − 2x2y) and +3y2 common in (3xy2 − 6y3)
= x2(x − 2y) + 3y2(x − 2y)
Taking (x - 2y) common in the terms
= (x − 2y)(x2 + 3y2)
∴ x3 − 2x2y + 3xy2 − 6y3 = (x − 2y)(x2 + 3y2)
Question: 7
Find the value
6ab − b2 + 12ac − 2bc
Solution:
Taking b common in (6ab − b2) and 2c in (12ac - 2bc)
= b(6a - b) + 2c (6a - b)
Taking (6a - b) common in the terms
= (6a - b)(b + 2c)
∴ 6ab − b2 + 12ac − 2bc = (6a - b)(b + 2c)
Question: 8
Find the value
[x2 + 1/x2] − 4[x + 1/x] + 6
Solution:
= x2 + 1/x2 − 4x − 4/x + 4 + 2
= x2 + 1/x2 + 4 + 2 − 4x − 4x
= (x2) + (1/x)2 + (−2)2 + 2 × x × 1/x + 2 × 1/x × (−2) + 2(−2)x
Using identity
x2 + y2 + z2 + 2xy + 2yz + 2zx = (x + y + z)2
We get,
= [x + 1/x + (−2)]2
= [x + 1/x − 2]2
= [x + 1/x − 2][x + 1/x − 2]
∴ [x2 + 1/x2] − 4[x + 1/x] + 6 = [x + 1/x − 2][x + 1/x − 2]
Question: 9
Find the value
x(x - 2)(x - 4) + 4x - 8
Solution:
= x(x - 2)(x - 4) + 4(x - 2)
Taking (x - 2) common in both the terms
=(x - 2){x(x - 4) + 4}
=(x - 2){x2 − 4x + 4}
Now splitting the middle term of x2 − 4x + 4
= (x - 2){x2 − 2x − 2x + 4}
= (x - 2){x( x - 2) -2(x - 2)}
= (x - 2){(x - 2)(x - 2)}
= (x - 2)(x - 2)(x - 2)
= (x − 2)3
∴ x(x - 2)(x - 4) + 4x - 8 = (x − 2)3
Question: 10
Find the value
(x + 2)(x2 + 25) − 10x2 − 20x
Solution:
(x + 2)(x2 + 25) - 10x (x + 2)
Taking (x + 2) common in both the terms
= (x + 2)(x2 + 25 − 10x)
= (x + 2)(x2 − 10x + 25)
Splitting the middle term of (x2 − 10x + 25)
= (x + 2)(x2 − 5x − 5x + 25)
= (x + 2){x(x - 5)-5 (x - 5)}
= (x + 2)(x - 5)(x - 5)
∴ (x + 2)(x2 + 25) − 10x2 - 20x = (x + 2)(x - 5)(x - 5)
Question: 11
Find the value
2a2+2√6ab +3b2
Solution:

Using the identity (p + q)2 = p2 + q2 + 2pq

Question: 12
Find the value
(a − b + c)2 + (b − c + a)2 + 2(a − b + c) × (b − c + a)
Solution:
Let (a - b + c) = x and (b - c + a) = y
= x2 + y2 + 2xy
Using the identity (a + b)2 = a2 + b2 + 2ab
= (x + y)2
Now, substituting x and y
(a - b + c + b − c + a)2
Cancelling -b, +b & + c, -c
= (2a)2
= 4a2
∴ (a − b + c)2 + (b − c + a)2 + 2(a − b + c) × (b − c + a) = 4a2
Question: 13
Find the value
a2 + b2 + 2(ab + bc + ca)
Solution:
= a2 + b2 + 2ab + 2bc + 2ca
Using the identity (p + q)2 = p2 + q2 + 2pq
We get,
= (a + b)2 + 2bc + 2ca
= (a + b)2 + 2c(b + a)
Or (a + b)2 + 2c(a + b)
Taking (a + b) common
= (a + b)(a + b + 2c)
∴ a2 + b2 + 2(ab + bc + ca) = (a + b)(a + b + 2c)
Question: 14
Find the value
4(x − y)2 − 12(x − y)(x + y) + 9(x + y)2
Solution:
Let(x - y) = x,(x + y) = y
= 4x2 − 12xy + 9y2
Splitting the middle term - 12 = – 6 - 6 also 4 × 9 = −6 × − 6
= 4x2 − 6xy − 6xy + 9y2
= 2x(2x - 3y) -3y(2x - 3y)
= (2x - 3y)(2x - 3y)
= (2x − 3y)2
Substituting x = x - y & y = x + y
= [2(x − y) − 3(x + y)]2 = [2x - 2y - 3x - 3y]2
= (2x - 3x - 2y - 3y)²
= [−x − 5y]2
= [(−1)(x + 5y)]2
= (x + 5y)2 [? (-1)2 = 1]
∴ 4(x − y)2 − 12(x − y)(x + y) + 9(x + y)2 = (x + 5y)2
Question: 15
Find the value
a2 − b2 + 2bc − c2
Solution:
a2 − (b2 − 2bc + c2)
Using the identity (a − b)2 = a2 + b2 − 2ab
= a2 − (b − c)2
Using the identity a2 − b2 = (a + b)(a − b)
= (a + b - c)(a - (b - c))
= (a + b - c)(a - b + c)
∴ a2 − b2 + 2bc − c2 = (a + b - c)(a - b + c)
Question: 16
Find the value
a2 + 2ab + b2 − c2
Solution:
Using the identity (p + q)2 = p2 + q2 + 2pq
= (a + b)2 − c2
Using the identity p2 − q2 = (p + q)(p − q)
= (a + b + c)(a + b - c)
∴ a2 + 2ab + b2 − c2 = (a + b + c)(a + b - c)
Question: 17
Find the value
a2 + 2ab + b2 − c2
Solution:
Using the identity (p + q)2 = p2 + q2 + 2pq
= (a + b)2 − c2
Using the identity p2 − q2 = (p + q)(p − q)
= (a + b + c)(a + b - c)
∴ a2 + 2ab + b2 − c2 = (a + b + c)(a + b - c)
Question: 18
Find the value
xy9 − yx9
Solution:
= xy(y8 − x8)
= xy((y4)2 − (x4)2)
Using the identity p2 − q2 = (p + q)(p - q)
= xy(y4 + x4)(y4 − x4)
= xy(y4 + x4)((y2)2 − (x2)2)
Using the identity p2 − q2 = (p + q)(p - q)
= xy(y4 + x4)(y2 + x2)(y2 − x2)
= xy(y4 + x4)(y2 + x2)(y + x)(y − x)
= xy(x4 + y4)(x2 + y2)(x + y)(−1)(x − y)
∴ (y − x) = −1(x − y)
= −xy(x4 + y4)(x2 + y2)(x + y)(x − y)
∴ xy9 − yx9 = −xy(x4 + y4)(x2 + y2)(x + y)(x − y)
Question: 19
Find the value
x4 + x2y2 + y4
Solution:
Adding x2y2 and subtracting x2y2 to the given equation
= x4 + x2y2 + y4 + x2y2 − x2y2
= x4 + 2x2y2 + y4 − x2y2
= (x2)2 + 2 × x2 × y2 + (y2)2 − (xy)2
Using the identity (p + q)2 = p2 + q2 + 2pq
= (x2 + y2)2 − (xy)2
Using the identity p2 − q2 = (p + q)(p - q)
= (x2 + y2 + xy)(x2 + y2 − xy)
∴ x4 + x2y2 + y4 = (x2 + y2 + xy)(x2 + y2 − xy)
Question: 20
Find the value
x2 − y2 − 4xz + 4z2
Solution:
On rearranging the terms
= x2 − 4xz + 4z2 − y2
= (x)2 − 2 × x × 2z + (2z)2 − y2
Using the identity x2 − 2xy + y2 = (x − y)2
= (x − 2z)2 − y2
Using the identity p2 − q2 = (p + q)(p - q)
= (x − 2z + y)(x − 2z − y)
∴ x2 − y2 − 4xz + 4z2 = (x − 2z + y)(x − 2z − y)
Question: 21
Find the value

Solution:
Splitting the middle term,

Question: 22
Find the value

Solution:
Splitting the middle term,

Question: 23
Find the value

Solution:
Splitting the middle term,

Question: 24
Find the value

Solution:
Splitting the middle term,

Question: 25
Find the value

Solution:
Splitting the middle term,

Question: 26
Find the value

Solution:
Splitting the middle term,
= 2x2 − x2 − x3 + 1/12
[∴ −5/6 = −1/2 − 1/3 also −1/2 × −1/3 = 2 × 1/12]
= x(2x − 1/2) − 1/6(2x − 1/2)
= (2x − 1/2)(x − 1/6)
∴ 2x2 − 56x + 1/12 = (2x − 1/2)(x − 1/6)
Question: 27
Find the value

Solution:
Splitting the middle term,

= x2 + x/7 + x/5 + 1/35
= x(x + 1/7) + 1/5(x + 1/7)
= (x + 1/7)(x + 1/5)

Question: 28
Find the value
21x2 − 2x + 1/21
Solution:

Using the identity (x - y)2 = x2 + y2 - 2xy

Question: 29
Find the value

Solution:
Splitting the middle term,

Question: 30
Find the value

Solution:
Splitting the middle term,

Question: 31
Find the value
9(2a − b)2 − 4(2a − b) − 13
Solution:
Let 2a - b = x
= 9x2 − 4x − 13
Splitting the middle term,
= 9x2 − 13x + 9x − 13
= x(9x − 13) + 1(9x − 13)
= (9x − 13)(x + 1)
Substituting x = 2a - b
= [9(2a − b) − 13](2a − b + 1)
= (18a − 9b − 13)(2a − b + 1)
∴ 9(2a − b)2 − 4(2a − b) − 13 = (18a − 9b − 13)(2a − b + 1)
Question: 32
Find the value
7(x − 2y)2 − 25(x − 2y) + 12
Solution:
Let x - 2y = P
= 7P2 − 25P + 12
Splitting the middle term,
= 7P2 − 21P − 4P + 12
= 7P(P − 3) − 4(P − 3)
= (P − 3)(7P − 4)
Substituting P = x - 2y
= (x − 2y − 3)(7(x − 2y) − 4)
= (x − 2y − 3)(7x − 14y − 4)
∴ 7(x − 2y)2 − 25(x − 2y) + 12 = (x − 2y − 3)(7x − 14y − 4)
Question: 33
Find the value
2(x + y)2 − 9(x + y) − 5
Solution:
Let x + y = z
= 2z2 − 9z − 5
Splitting the middle term,
= 2z2 − 10z + z − 5
= 2z(z − 5) + 1(z − 5)
= (z − 5)(2z + 1)
Substituting z = x + y
= (x + y − 5)(2(x + y) + 1)
= (x + y − 5)(2x + 2y + 1)
∴ 2(x + y)2 − 9(x + y) − 5 = (x + y − 5)(2x + 2y + 1)
Question: 34
Give the possible expression for the length & breadth of the rectangle having 35y2 − 13y − 12 as its area.
Solution:
Area is given as 35y2 − 13y − 12
Splitting the middle term,
Area = 35y2 + 218y − 15y − 12
= 7y(5y + 4) − 3(5y + 4)
= (5y + 4)(7y − 3)
We also know that area of rectangle = length × breadth
∴ Possible length = (5y + 4) and breadth = (7y − 3)
Or possible length = (7y − 3) and breadth = (5y + 4)
Question: 35
What are the possible expression for the cuboid having volume 3x2 − 12x.
Solution:
Volume = 3x2 − 12x
= 3x(x − 4)
= 3×x(x − 4)
Also volume = Length × Breadth × Height
∴ Possible expression for dimensions of cuboid are = 3, x, (x − 4)
View courses by askIITians


Design classes One-on-One in your own way with Top IITians/Medical Professionals
Click Here Know More

Complete Self Study Package designed by Industry Leading Experts
Click Here Know More

Live 1-1 coding classes to unleash the Creator in your Child
Click Here Know More
