Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Chapter 4: Algebraic Identities Exercise – 4.1 Question: 1 Evaluate each of the following using identities: (i) (2× − 1/×)2 (ii) (2× + y)(2× - y) (iii) (a2b − ab2)2 (iv) (a - 0.1)(a + 0.1) (v) (1.5×2 − 0.3y2)(1.5×2 + 0.3y2) Solution: (i) Given, (2× − 1/×)2 = (2×)2 + (1/×)2 − 2 ∗ 2× ∗ 1/× (2× − 1/×)2 = 4×2 + 1/×2 – 4 [∴ (a − b)2 = a2 + b2 − 2ab] Where, a = 2×, b = 1/× ∴ (2× − 1/×)2 = 4×2 + 1/×2 − 4 (ii) Given, (2× + y)(2× - y) = (2×)2 − (y)2 [ ∴ (a + b)(a − b) = a2 − b2] = 4×2 − y2 ∴ (2× + y)(2× − y) = 4×2 − y2 (iii) Given, (a2b − ab2)2 = (a2b)2 + (ab2)2 − 2 ∗ a2b ∗ ab2 [∴ (a − b)2 = a2 + b2 − 2ab] Where, a = a2b, b = ab2 = a4b2 + b4a2 − 2a3b3 (a2b − ab2)2 = a4b2 + b4a2 − 2a3b3 (iv) Given, (a - 0.1)(a + 0.1) = a2 − (0.1)2 [∴ (a + b)(a − b) = a2 − b2] Where, a = a and b = 0.1 = a2 − 0.01 ∴ (a − 0.1)(a + 0.1) = a2 − 0.01 (v) Given, (1.5×2 − 0.3y2)(1.5×2 + 0.3y2) = (1.5×2)2 − (0.3y2)2 [∴ (a + b)(a − b) = a2 − b2] Where, a = 1.5×2, b = 0.3y2 = 2.25×4 − 0.09y4 ∴ (1.5×2 − 0.3y2)(1.5×2 + 0.3y2) = 2.25×4 − 0.09y4 Question: 2 Evaluate each of the following using identities: (i) (399)2 (ii) (0.98)2 (iii) 991 × 1009 (iv) 117 × 83 Solution: (i) We have, 3992 = (400-1)2 = (400)2 + (1)2 - 2 × 400 ×1 [(a - b)2 = a2 + b2 - 2ab] Where, a = 400 and b = 1 = 160000 + 1 - 8000 = 159201 Therefore, (399)2 = 159201. (ii) We have, (0.98)2 = (1-0.02)2 = (1)2 + (0.02)2 - 2 × 1 × 0.02 = 1 + 0.0004 - 0.04 [Where, a = 1 and b = 0.02] = 1.0004 - 0.04 = 0.9604 Therefore, (0.98)2 = 0.9604 (iii) 991 × 1009 Solution: We have, 991 × 1009 = (1000 - 9)(1000 + 9) = (1000)2 - (9)2 [(a + b)(a - b) = a2 - b2] = 1000000 - 81 [Where a = 1000 and b = 9] = 999919 Therefore, 991 × 1009 = 999919 (iv) We have, 117 × 83 = (100 + 17)(100 - 17) = (100)2 - (17)2 [(a + b)(a - b) = a2 - b2] = 10000 - 289 [Where a = 100 and b = 17] = 9711 Therefore, 117 × 83 = 9711 Question: 3 Simplify each of the following: (i) 175 × 175 + 2 × 175 × 25 + 25 × 25 (ii) 322 × 322 - 2 × 322 × 22 + 22 × 22 (iii) 0.76 × 0.76 + 2 × 0.76 × 0.24 + 0.24 × 0.24 Solution: (i) We have, 175 × 175 + 2 × 175 × 25 + 25 × 25 = (175)2 + 2 (175) (25) + (25)2 = (175 + 25)2 [a2 + b2 + 2ab = (a + b)2] = (200)2 [Where a = 175 and b = 25] = 40000 Therefore, 175 × 175 + 2 × 175 × 25 + 25 × 25 = 40000. (ii) We have, 322 × 322 - 2 × 322 × 22 + 22 × 22 = (322-22)2 [a2+ b2- 2ab = (a – b)2] = (300)2 [ Where a = 322 and b = 22] = 90000 Therefore, 322 × 322 - 2 × 322 × 22 + 22 × 22 = 90000. (iii) We have, 0.76 × 0.76 + 2 × 0.76 × 0.24 + 0.24 × 0.24 = (0.76 + 0.24)2 [a2 + b2 + 2ab = (a + b)2] = (1.00)2 [Where a = 0.76 and b = 0.24] = 1 Therefore, 0.76 × 0.76 + 2 × 0.76 × 0.24 + 0.24 × 0.24 = 1. (iv) We have, Question: 4 If x + 1/x = 11, find the value of x2 + 1/x2 Solution: We have, x + 1/x = 11 Now, (x + 1/x)2 = x2 + (1/x)2 + 2 ∗ x∗1/x ⇒ (x + 1/x)2 = x/2 + 1/x2 + 2 ⇒(11)2 = x2 + 1/x2 + 2[?x + 1/x = 11] ⇒ 121 = x2 + 1/x2 + 2 ⇒ x2 + 1/x2 = 119 Question: 5 If x − 1/x = −1, find the value of x2 + 1/x2 Solution: We have, x − 1/x = −1 Now, (x − 1/x)2 = x2 + (1/x)2 − 2 ∗ x ∗ 1/x ⇒ (x − 1/x)2 = x2 + 1/x2 − 2 ⇒ (−1)2 = x2 + 1/x2 − 2[ ∴ x − 1/x = −1] ⇒ 2 + 1 = x2 + 1/x2 ⇒ x2 + 1/x2 = 3 Question: 6 Solution: We have, (x + 1/x)2 = x2 + (1/x)2 + 2 ∗ x ∗ 1/x ⇒ (x + 1/x)2 = x2 + 1/x2 + 2 ⇒ 5 = x2 + 1/x2 + 2 ⇒ x2 + 1/x2 = 3 ...(1) Now, (x2 + 1/x2)2 = x4 + 1/x4 + 2 ∗ x2 ∗ 1/x2 ⇒ (x2 + 1 × 2)2 = x4 + 1/x4 + 2 ⇒ 9 = x4 + 1/x4 + 2 [∴ x2 + 1/x2 = 3] ⇒ x4 + 1/x4 = 7 Hence, x2 + 1/x2 = 3; x4 + 1/x4 = 7. Question: 7 If x2 + 1/x2 = 66, find the value of x − 1/x Solution: We have, (x − 1/x)2 = x2 + (1/x)2 − 2 ∗ x ∗ 1/x ⇒ (x − 1/x)2 = x2 + 1/x2 − 2 ⇒ (x − 1/x)2 = 66 – 2 [∴ x2 +1/x2 = 66] ⇒ (x − 1/x)2 = 64 ⇒ (x − 1/x)2 = (± 8)2 ⇒ x − 1/x = ± 8 Question: 8 If x2 + 1/x2 = 79, find the value of x + 1/x Solution: We have, (x + 1/x)2 = x2 + (1/x)2 + 2 ∗ x ∗ 1/x ⇒ (x + 1/x)2 = x2 + 1/x2 + 2 ⇒ (x + 1/x)2 = 79 + 2 [∴ x2 + 1/x2 = 79] ⇒ (x + 1/x)2 = 81 ⇒ (x + 1/x)2 = (± 9)2 ⇒ x +1/x = ± 9 Question: 10 If 9x2 + 25y2 = 181 and xy = -6, find the value of 3x + 5y. Solution: We have, (3x + 5y)2 = (3x)2 + (5y)2 + 2 * 3x * 5y ⇒ (3x + 5y)2 = 9×2 + 25y2 + 30xy = 181 + 30(-6) [Since, 9x2 + 25y2 = 181 and xy = - 6] ⇒ (3x + 5y)2 = 1 ⇒ (3x + 5y)2 = (± 1)2 ⇒ 3x + 5y = ± 1 Question: 11 If 3x - 7y = 10 and xy = -1, find the value of 9x2 + 49y2. Solution: We have, (2 - 7y)2 = (3x)2 + (-7y)2 - 2 * 3x *7y ⇒ (3x - 7y)2 = 9x2 + 49y2 - 42xy [Since, 3x - 7y = 10 and xy = -1] ⇒ (10)2 = 9x2 + 49y2 + 42 ⇒ 100 - 42 = 9x2 + 49y2 ⇒ 9×2 + 49y2 = 58 Question: 12 Simplify each of the following products: (ii) (m + n/7)3(m − n/7) (iii) (x/2 − 2/5)(2/5 − x/2) − x2 + 2x (iv) (x2 + x − 2)(x2 − x + 2) (v) (x3 − 3x − x)(x2 − 3x + 1) (vi) (2x4 − 4x2 + 1)(2x4 − 4x2 − 1) Solution: (i) We have, (ii) We have, We have, (m + n/7)3(m − n/7) = (m + n/7)(m + n/7)(m + n/7)(m − n/7) = (m + n/7)2(m2 − (n/7)2) [∴ (a + b)(a + b) = (a + b)2 and (a + b)(a − b) = a2 − b2] = (m + n7)2(m2 − n2/49) ∴ (m + n/7)3(m − n/7) = (m + n/7)2(m2 − n2/49) (iii) We have, (x/2 − 2/5)(2/5 − x/2) − x2 + 2x ⇒ −(2/5 − x/2)(2/5 − x/2) − x2 + 2x ⇒ −(2/5 − x/2)2 − x2 + 2x [∴ (a − b)(a − b) = (a − b)2] ⇒ −[(2/5)2 + (x/2)2 − 2(2/5)(x/2)] − x2 + 2x ⇒ −(4/25 + x2/4 − 2x/5) − x2 + 2x ⇒ −x2/4 − x2 + 2x/5 + 2x − 4/25 ⇒ −5x2/4 + 12x/5 − 4/25 ∴ (x/2 − 2/5)(2/5 − x/2) − x2 + 2x = −5x2/4 + 12x/5 − 4/25 (iv) We have, (x2 + x − 2)(x2 − x + 2) [(x)2 + (x − 2)][(x2 − (x + 2)] ⇒ (x2)2 − (x − 2)2 [(a - b)(a + b) = a2 - b2] ⇒ x4 − (x2 + 4 − 4x) [∴ (a − b)2 = a2 + b2 − 2ab] ⇒ x4 − x2 + 4x − 4 ∴ (x2 + x − 2)(x2 − x + 2) = x4 − x2 + 4x − 4 (v) we have, (x3 − 3x − x)(x2 − 3x + 1) ⇒ x(x2 − 3x − 1)(x2 − 3x + 1) ⇒ x[(x2 − 3x)2 − (1)2] [∴ (a + b)(a − b) = a2 − b2] ⇒ x[(x2)2 + (−3x)2 − 2(3x)(x2) − 1] ⇒ x[x4 + 9x2 − 6x3 − 1] ⇒ x5 − 6x4 + 9x3 − x ∴ (x3 − 3x − x)(x2 − 3x + 1) = x5 − 6x4 + 9x3 − x (vi) We have, (2x4 − 4x2 + 1)(2x4 − 4x2 − 1) ⇒ [(2x4 − 4x2)2 − (1)2] [∴ (a + b)(a − b) = a2 − b2] ⇒ [(2x4)2 + (4x2)2 − 2(2x4)(4x2) − 1] ⇒ 4x8 − 16x6 + 16x4 − 1 [∴ (a − b)2 = a2 + b2 − 2ab] ∴ (2x4 − 4x2 + 1)(2x4 − 4x2 − 1) = 4x8 − 16x6 + 16x4 − 1 Question: 13 Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c. Solution: We have, a2 + b2 + c2 − ab − bc − ca Multiply and divide by ‘2’ = 2/2[a2 + b2 + c2 − ab − bc − ca] = 1/2[2a2 + 2b2 + 2c2 − 2ab − 2bc − 2ca] = 1/2[a2 + a2 + b2 + b2 + c2 + c2 − 2ab − 2bc − 2ca] = 1/2[(a2 + b2 − 2ab) + (a2 + c2 − 2ca) + (b2 + c2 − 2bc)] = 1/2[(a − b)2 + (b − c)2 + (c − a)2] [?(a − b)2 = a2 + b2 − 2ab] ∴ a2 + b2 + c2 − ab − bc − ca ≥ 0 Hence, a2 + b2 + c2 − ab − bc − ca ≥ 0 is always non-negative for all values of a, b and c.
Evaluate each of the following using identities:
(i) (2× − 1/×)2
(ii) (2× + y)(2× - y)
(iii) (a2b − ab2)2
(iv) (a - 0.1)(a + 0.1)
(v) (1.5×2 − 0.3y2)(1.5×2 + 0.3y2)
(i) Given,
(2× − 1/×)2 = (2×)2 + (1/×)2 − 2 ∗ 2× ∗ 1/×
(2× − 1/×)2 = 4×2 + 1/×2 – 4 [∴ (a − b)2 = a2 + b2 − 2ab]
Where, a = 2×, b = 1/×
∴ (2× − 1/×)2 = 4×2 + 1/×2 − 4
(ii) Given,
(2× + y)(2× - y)
= (2×)2 − (y)2 [ ∴ (a + b)(a − b) = a2 − b2]
= 4×2 − y2
∴ (2× + y)(2× − y) = 4×2 − y2
(iii) Given,
(a2b − ab2)2
= (a2b)2 + (ab2)2 − 2 ∗ a2b ∗ ab2 [∴ (a − b)2 = a2 + b2 − 2ab]
Where, a = a2b, b = ab2
= a4b2 + b4a2 − 2a3b3
(a2b − ab2)2 = a4b2 + b4a2 − 2a3b3
(iv) Given,
(a - 0.1)(a + 0.1)
= a2 − (0.1)2 [∴ (a + b)(a − b) = a2 − b2]
Where, a = a and b = 0.1
= a2 − 0.01
∴ (a − 0.1)(a + 0.1) = a2 − 0.01
(v) Given,
(1.5×2 − 0.3y2)(1.5×2 + 0.3y2)
= (1.5×2)2 − (0.3y2)2 [∴ (a + b)(a − b) = a2 − b2]
Where, a = 1.5×2, b = 0.3y2
= 2.25×4 − 0.09y4
∴ (1.5×2 − 0.3y2)(1.5×2 + 0.3y2) = 2.25×4 − 0.09y4
(i) (399)2
(ii) (0.98)2
(iii) 991 × 1009
(iv) 117 × 83
(i) We have,
3992 = (400-1)2
= (400)2 + (1)2 - 2 × 400 ×1 [(a - b)2 = a2 + b2 - 2ab]
Where, a = 400 and b = 1
= 160000 + 1 - 8000
= 159201
Therefore, (399)2 = 159201.
(ii) We have,
(0.98)2 = (1-0.02)2
= (1)2 + (0.02)2 - 2 × 1 × 0.02
= 1 + 0.0004 - 0.04 [Where, a = 1 and b = 0.02]
= 1.0004 - 0.04
= 0.9604
Therefore, (0.98)2 = 0.9604
Solution:
We have,
991 × 1009
= (1000 - 9)(1000 + 9)
= (1000)2 - (9)2 [(a + b)(a - b) = a2 - b2]
= 1000000 - 81 [Where a = 1000 and b = 9]
= 999919
Therefore, 991 × 1009 = 999919
(iv) We have,
117 × 83
= (100 + 17)(100 - 17)
= (100)2 - (17)2 [(a + b)(a - b) = a2 - b2]
= 10000 - 289 [Where a = 100 and b = 17]
= 9711
Therefore, 117 × 83 = 9711
Simplify each of the following:
(i) 175 × 175 + 2 × 175 × 25 + 25 × 25
(ii) 322 × 322 - 2 × 322 × 22 + 22 × 22
(iii) 0.76 × 0.76 + 2 × 0.76 × 0.24 + 0.24 × 0.24
175 × 175 + 2 × 175 × 25 + 25 × 25 = (175)2 + 2 (175) (25) + (25)2
= (175 + 25)2 [a2 + b2 + 2ab = (a + b)2]
= (200)2 [Where a = 175 and b = 25]
= 40000
Therefore, 175 × 175 + 2 × 175 × 25 + 25 × 25 = 40000.
322 × 322 - 2 × 322 × 22 + 22 × 22
= (322-22)2 [a2+ b2- 2ab = (a – b)2]
= (300)2 [ Where a = 322 and b = 22]
= 90000
Therefore, 322 × 322 - 2 × 322 × 22 + 22 × 22 = 90000.
(iii) We have,
0.76 × 0.76 + 2 × 0.76 × 0.24 + 0.24 × 0.24
= (0.76 + 0.24)2 [a2 + b2 + 2ab = (a + b)2]
= (1.00)2 [Where a = 0.76 and b = 0.24]
= 1
Therefore, 0.76 × 0.76 + 2 × 0.76 × 0.24 + 0.24 × 0.24 = 1.
If x + 1/x = 11, find the value of x2 + 1/x2
We have, x + 1/x = 11
Now, (x + 1/x)2 = x2 + (1/x)2 + 2 ∗ x∗1/x
⇒ (x + 1/x)2 = x/2 + 1/x2 + 2
⇒(11)2 = x2 + 1/x2 + 2[?x + 1/x = 11]
⇒ 121 = x2 + 1/x2 + 2
⇒ x2 + 1/x2 = 119
If x − 1/x = −1, find the value of x2 + 1/x2
We have, x − 1/x = −1
Now, (x − 1/x)2 = x2 + (1/x)2 − 2 ∗ x ∗ 1/x
⇒ (x − 1/x)2 = x2 + 1/x2 − 2
⇒ (−1)2 = x2 + 1/x2 − 2[ ∴ x − 1/x = −1]
⇒ 2 + 1 = x2 + 1/x2
⇒ x2 + 1/x2 = 3
(x + 1/x)2 = x2 + (1/x)2 + 2 ∗ x ∗ 1/x
⇒ (x + 1/x)2 = x2 + 1/x2 + 2
⇒ 5 = x2 + 1/x2 + 2
⇒ x2 + 1/x2 = 3 ...(1)
Now, (x2 + 1/x2)2 = x4 + 1/x4 + 2 ∗ x2 ∗ 1/x2
⇒ (x2 + 1 × 2)2 = x4 + 1/x4 + 2
⇒ 9 = x4 + 1/x4 + 2 [∴ x2 + 1/x2 = 3]
⇒ x4 + 1/x4 = 7
Hence, x2 + 1/x2 = 3; x4 + 1/x4 = 7.
If x2 + 1/x2 = 66, find the value of x − 1/x
(x − 1/x)2 = x2 + (1/x)2 − 2 ∗ x ∗ 1/x
⇒ (x − 1/x)2 = 66 – 2 [∴ x2 +1/x2 = 66]
⇒ (x − 1/x)2 = 64
⇒ (x − 1/x)2 = (± 8)2
⇒ x − 1/x = ± 8
If x2 + 1/x2 = 79, find the value of x + 1/x
⇒ (x + 1/x)2 = 79 + 2 [∴ x2 + 1/x2 = 79]
⇒ (x + 1/x)2 = 81
⇒ (x + 1/x)2 = (± 9)2
⇒ x +1/x = ± 9
If 9x2 + 25y2 = 181 and xy = -6, find the value of 3x + 5y.
(3x + 5y)2 = (3x)2 + (5y)2 + 2 * 3x * 5y
⇒ (3x + 5y)2 = 9×2 + 25y2 + 30xy
= 181 + 30(-6) [Since, 9x2 + 25y2 = 181 and xy = - 6]
⇒ (3x + 5y)2 = 1
⇒ (3x + 5y)2 = (± 1)2
⇒ 3x + 5y = ± 1
If 3x - 7y = 10 and xy = -1, find the value of 9x2 + 49y2.
(2 - 7y)2 = (3x)2 + (-7y)2 - 2 * 3x *7y
⇒ (3x - 7y)2 = 9x2 + 49y2 - 42xy [Since, 3x - 7y = 10 and xy = -1]
⇒ (10)2 = 9x2 + 49y2 + 42
⇒ 100 - 42 = 9x2 + 49y2
⇒ 9×2 + 49y2 = 58
Simplify each of the following products:
(ii) (m + n/7)3(m − n/7)
(iii) (x/2 − 2/5)(2/5 − x/2) − x2 + 2x
(iv) (x2 + x − 2)(x2 − x + 2)
(v) (x3 − 3x − x)(x2 − 3x + 1)
(vi) (2x4 − 4x2 + 1)(2x4 − 4x2 − 1)
(m + n/7)3(m − n/7)
= (m + n/7)(m + n/7)(m + n/7)(m − n/7)
= (m + n/7)2(m2 − (n/7)2) [∴ (a + b)(a + b) = (a + b)2 and (a + b)(a − b) = a2 − b2]
= (m + n7)2(m2 − n2/49)
∴ (m + n/7)3(m − n/7) = (m + n/7)2(m2 − n2/49)
(x/2 − 2/5)(2/5 − x/2) − x2 + 2x
⇒ −(2/5 − x/2)(2/5 − x/2) − x2 + 2x
⇒ −(2/5 − x/2)2 − x2 + 2x [∴ (a − b)(a − b) = (a − b)2]
⇒ −[(2/5)2 + (x/2)2 − 2(2/5)(x/2)] − x2 + 2x
⇒ −(4/25 + x2/4 − 2x/5) − x2 + 2x
⇒ −x2/4 − x2 + 2x/5 + 2x − 4/25
⇒ −5x2/4 + 12x/5 − 4/25
∴ (x/2 − 2/5)(2/5 − x/2) − x2 + 2x = −5x2/4 + 12x/5 − 4/25
(x2 + x − 2)(x2 − x + 2)
[(x)2 + (x − 2)][(x2 − (x + 2)]
⇒ (x2)2 − (x − 2)2 [(a - b)(a + b) = a2 - b2]
⇒ x4 − (x2 + 4 − 4x) [∴ (a − b)2 = a2 + b2 − 2ab]
⇒ x4 − x2 + 4x − 4
∴ (x2 + x − 2)(x2 − x + 2) = x4 − x2 + 4x − 4
(v) we have,
(x3 − 3x − x)(x2 − 3x + 1)
⇒ x(x2 − 3x − 1)(x2 − 3x + 1)
⇒ x[(x2 − 3x)2 − (1)2] [∴ (a + b)(a − b) = a2 − b2]
⇒ x[(x2)2 + (−3x)2 − 2(3x)(x2) − 1]
⇒ x[x4 + 9x2 − 6x3 − 1]
⇒ x5 − 6x4 + 9x3 − x
∴ (x3 − 3x − x)(x2 − 3x + 1) = x5 − 6x4 + 9x3 − x
(vi) We have,
(2x4 − 4x2 + 1)(2x4 − 4x2 − 1)
⇒ [(2x4 − 4x2)2 − (1)2] [∴ (a + b)(a − b) = a2 − b2]
⇒ [(2x4)2 + (4x2)2 − 2(2x4)(4x2) − 1]
⇒ 4x8 − 16x6 + 16x4 − 1 [∴ (a − b)2 = a2 + b2 − 2ab]
∴ (2x4 − 4x2 + 1)(2x4 − 4x2 − 1) = 4x8 − 16x6 + 16x4 − 1
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c.
a2 + b2 + c2 − ab − bc − ca
Multiply and divide by ‘2’
= 2/2[a2 + b2 + c2 − ab − bc − ca]
= 1/2[2a2 + 2b2 + 2c2 − 2ab − 2bc − 2ca]
= 1/2[a2 + a2 + b2 + b2 + c2 + c2 − 2ab − 2bc − 2ca]
= 1/2[(a2 + b2 − 2ab) + (a2 + c2 − 2ca) + (b2 + c2 − 2bc)]
= 1/2[(a − b)2 + (b − c)2 + (c − a)2] [?(a − b)2 = a2 + b2 − 2ab]
∴ a2 + b2 + c2 − ab − bc − ca ≥ 0
Hence, a2 + b2 + c2 − ab − bc − ca ≥ 0 is always non-negative for all values of a, b and c.
Signing up with Facebook allows you to connect with friends and classmates already using askIItians. It’s an easier way as well. “Relax, we won’t flood your facebook news feed!”
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
Chapter 4: Algebraic Identities Exercise –...