Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
LHS,
Sin 5θ = sin (3θ + 2θ)
= sin 3θ cos 2θ + cos 3θ. sin 2θ
= (3 sinθ – 4 sin3 θ)(1 – 2 sin2 θ) + (4 cos3θ - 3 cos θ) 2 sin θ cos θ.
= 3 sinθ – 4 sin3θ – 6 sin3θ + 8 sin5θ + (8 cos4θ – 6 cos2θ) sinθ
= 3 sinθ – 10 sin3θ + 8 sin5θ + 8 sinθ – 16 sin3θ + 8 sin5θ – 6 sinθ + 6 sin3θ
= 5 sinθ – 20 sin3θ + 16 sin5θ = RHS
Consider the L.H.S of the given equation
4(cos310° + sin320°) = 3(cos 10° + sin 20°)
since sin 30° = cos 60° = 1/2
and sin 60° = cos 30° = √3/2
⟹ sin 3.20° = cos 3.10°
⟹ 3sin20° - 4sin320° = 4 cos310° - 3 cos10°
⟹ 4(cos310° + sin320°) = 3(cos10° + sin 20°)
cos3 θ sin3θ + sin3θ cos 3θ = 3/4 sin 4θ
LHS = cos3θ sin3θ + sin3θ cos 3θ
{∵ sin 3θ = 3 sin θ – 4 sin3 θ cos 3θ = 4 cos3 θ – 3 cos θ}
= 1/4 [3(sin 3θ cos θ + sin θ cos 3θ) + cos 3θ sin 3θ – sin 3θ cos 3θ]
= 1/4 [3 sin (3θ + θ) + 0]
= 3/4 sin 4θ
So,
We have to prove that
sin 5A = 5cos4 A sin A - 10cos2 A sin3A + sin5 A
L.H.S = sin 5A = sin (3A + 2A)
= sin 3A cos 2A + cos 3A. sin 2A
= (3sin A - 4sin3 A) (2cos2 A -1) + (4cos3 A - 3cos A) 2sin A cos A.
= -3 sin A + 4 sin3 A + 6 sin A cos2A - 8 sin3A cos2A + 8 cos4A sin A - 6 cos2A sin A
= 8cos4A sin A – 8 sin3A cos2A – 3sin A + 4 sin3A
= 5 cos4A sin A - 10 sin3A cos2A – 3 sin A + 3 cos4A sin A + 4 sin3A + 2 sin3A cos2A
= 5 cos4A sin A – 10 sin3A cos2A – 3 sin A (1 -cos4A) + 2 sin3A (2 + cos2A)
= 5cos4A sin A - 10 sin3A cos2A – 3 sin A (1- cos2 A) (1 + cos2A) +2 sin3 A(2 + cos2A)
= 5 cos4A sin A- 10 sin3A cos2A – 3 sin3 A (1 + cos2A) + 2 sin3 A (2 + cos2A)
= 5cos4AsinA-10 sin3Acos2A - sin3 A [3(1 + cos2A) - 2(2 + cos2A)]
= 5 cos4A sin A- 10 sin3A cos2A - sin3A [3 + 3 cos2A - 4 – 2cos2A]
= 5 cos4A sin A - 10 sin3A cos2A - sin3A [cos2A - 1]
= 5 cos4A sin A - 10 sin3A cos2A + sin5A
= RHS
tan A × tan(A + 60°) + tan A × tan(A - 60°) + tan(A + 60°) tan(A - 60°)
tan A + tan(60° + A) - tan(60° - A) = 3 tan 3A
LHS = tan A + tan (60° + A) - tan (60° - A)
= 3 tan 3A
LHS = cot A + cot(60° + A) - cot(60° - A)
= 3cot 3A
LHS = RHS
Hence proved
LHS = cotA + cot(60° + A) + cot(120° + A)
= cotA + cot(60° + A) - cot[180° - (120° + A)]
{since - cotθ = cot(180° - θ)}
= cotA + cot(60° + A) - cot(60° - A)
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Chapter 9: Trigonometric Ratios of Multiple and...