| xi | fi | Cum.Freq | |di| = |xi - 61| | fi|di| |
| 58 | 15 | 15 | 3 | 45 |
| 59 | 20 | 35 | 2 | 40 |
| 60 | 32 | 67 | 1 | 32 |
| 61 | 35 | 102 | 0 | 0 |
| 62 | 35 | 137 | 1 | 35 |
| 63 | 22 | 159 | 2 | 44 |
| 64 | 20 | 179 | 3 | 60 |
| 65 | 10 | 189 | 4 | 40 |
| 66 | 8 | 197 | 5 | 40 |
| N = 197 | Total = 336 |

Corresponding value for median is 61
.png)
We have to calculate mean deviation from the median. So, first we calculate the median.
| x | f | cf | d = (x – med) | fd |
| 0 | 14 | 14 | 4 | 56 |
| 1 | 21 | 35 | 3 | 63 |
| 2 | 25 | 60 | 2 | 50 |
| 3 | 43 | 103 | 1 | 43 |
| 4 | 51 | 154 | 0 | 0 |
| 5 | 40 | 194 | 1 | 40 |
| 6 | 39 | 233 | 2 | 78 |
| 7 | 12 | 245 | 3 | 36 |
| 245 | 366 |
we have N = 245 ⟹ N/2 = 122.5
The cumulative frequency just greater than N/2 is 154 and the corresponding value of x is 4.
Hence, Median = 4

| xi | fi | Cum fre | |di| = |xi - 13| | fi|di| |
| 5 | 2 | 2 | 8 | 16 |
| 7 | 4 | 6 | 6 | 24 |
| 9 | 6 | 12 | 4 | 24 |
| 11 | 8 | 20 | 2 | 16 |
| 13 | 10 | 30 | 0 | 0 |
| 15 | 12 | 42 | 2 | 24 |
| 17 | 8 | 50 | 4 | 32 |
| N = 50 | Total = 136 |

Value corresponding to 25 is median = 13
.png)
| xi | fi | fixi | |di| = |xi - 9| | fi|di| |
| 5 | 8 | 40 | 4 | 32 |
| 7 | 6 | 42 | 2 | 12 |
| 9 | 2 | 18 | 0 | 0 |
| 10 | 2 | 20 | 1 | 2 |
| 12 | 2 | 24 | 3 | 6 |
| 15 | 6 | 90 | 6 | 36 |
| 26 | Total = 234 | Total = 88 |
.png)
Mean = 9
..png)
| x | f | xf | d = (x - mean) | fd |
| 5 | 7 | 35 | 9 | 63 |
| 10 | 4 | 40 | 4 | 16 |
| 15 | 6 | 90 | 1 | 6 |
| 20 | 3 | 60 | 6 | 18 |
| 25 | 5 | 125 | 11 | 55 |
| 25 | 350 | 158 |
.png)
| x | f | xf | d = (x – mean) | fd |
| 10 | 4 | 40 | 40 | 160 |
| 30 | 24 | 720 | 20 | 480 |
| 50 | 28 | 1400 | 0 | 0 |
| 70 | 16 | 1120 | 20 | 320 |
| 90 | 8 | 720 | 40 | 320 |
| 80 | 4000 | 180 |
.png)
| xi | fi | fixi | |di| = |xi - 21.65| | fi|di| |
| 20 | 6 | 120 | 1.65 | 9.9 |
| 21 | 4 | 84 | 0.65 | 2.6 |
| 22 | 5 | 110 | 0.35 | 1.75 |
| 23 | 1 | 23 | 1.35 | 1.35 |
| 24 | 4 | 96 | 2.35 | 9.4 |
| 20 | Total = 433 | Total = 25 |
.png)
Mean = 21.65
..png)
| xi | fi | Cum. Freq | |di| = |xi - 30| | fi|di| |
| 15 | 3 | 3 | 15 | 45 |
| 21 | 5 | 8 | 9 | 45 |
| 27 | 6 | 14 | 3 | 18 |
| 30 | 7 | 21 | 0 | 0 |
| 35 | 8 | 29 | 5 | 40 |
| 29 | Total = 148 |

Median = 30
.png)
We have to calculate mean deviation from the median, So, first we calculate the median,
| x | f | cf | d = (x-med) | fd |
| 35 | 4 | 4 | 39 | 456 |
| 42 | 2 | 6 | 32 | 64 |
| 54 | 4 | 10 | 20 | 80 |
| 74 | 20 | 30 | 0 | 0 |
| 89 | 12 | 42 | 15 | 180 |
| 91 | 5 | 47 | 17 | 85 |
| 94 | 3 | 50 | 20 | 60 |
| 50 | 625 |
We have N = 50 ⟹ N/2 = 25
The cumulative frequency just greater than N/2 is 30 and the corresponding value of x is 74.
Hence, median = 74
.png)
| xi | fi | Cum. Freq | |di| = |xi - 12| | fi|di| |
| 10 | 2 | 2 | 2 | 4 |
| 11 | 3 | 5 | 1 | 3 |
| 12 | 8 | 13 | 0 | 0 |
| 14 | 3 | 16 | 2 | 6 |
| 15 | 4 | 20 | 3 | 12 |
| 20 | Total = 25 |
.png)
Median = 12
.png)







