x2 + 10ix – 21 = 0
⟹ x2 + 10ix + 21i2 = 0 [∵ i2 = – 1]
⟹ x2 + 7ix + 3ix + 21i2 = 0
⟹ x(x + 7i) +3i(x + 7i) = 0
⟹ (x + 3i)(x + 7i) = 0
∴ x = – 3i, – 7i
x2 + (1 – 2i)x – 1i = 0
⟹ x2 + x – 2i – 2i = 0
⟹ x(x + 1) – 2i(x + 1) = 0
⟹ (x – 2i)(x + 1) = 0
⟹ x = 2i, – 1
6x2 - 17i x – 12 = 0
⟹ 6x2 - 17i x + 12i2 = 0 [∵ i2 = – 1]
⟹ 6x2 - 9ix – 8ix + 12i2 = 0
⟹3x(2x – 3i) – 4i(2x – 3i) = 0
⟹ (3x – 4i)(2x – 3i) = 0
⟹ x =4/3i or 3/2i
x2 – (5 – i)x + (18 + i) = 0
⟹ x2 - 5x – ix + 18 + i = 0
⟹ x2 - (3 – 4i)x – (2 + 3i)x + (18 + i) = 0
⟹ x(x – (3 – 4i)) – (2 + 3i)(x – (3 – 4i)) = 0
⟹ (x – (2 + 3i))(x – (3 – 4i)) = 0
⟹ x = 2 + 3i or 3 – 4i
(2 + i)x2 - (5 – i)x + 2(1 – i) = 0
⟹ x [2 + i)x – 2] – (1 – i) [(2 + i)x – 2] = 0
⟹ [x -(1 – i) ][(2 + i) x – 2] = 0
either [x – (1 – i)] = 0 or [(2 + i) × – 2] = 0
x2 - (2 + i)x - (1 - 7i) = 0
⟹ x2 - (2 + i)x - (1 - 7i) = 0
⟹ x2 - (3 - i)x + (1 - 2i)x - (1 - 7i) = 0
⟹ x(x - (3 - i)) + (1 - 2i)(x - (3 - i)) = 0
⟹ [x + (1 - 2i)][x - (3 - i)] = 0
⟹ x = – 1 + 2i, 3 – i
⟹ x = – 1 + 2i, 3 – i
ix2 - 4x - 4i = 0
⟹ ix2 + 4i2x + 4i3 = 0 [∵ i2 = – 1]
⟹ x2 + 4ix + 4i2 = 0
⟹ x2 + 2ix + 2ix + 4i2 = 0
⟹ x(x + 2i) + 2i(x + 2i) = 0
⟹ (x + 2i)(x + 2i)
∴ x = – 2i, – 2i
x2 + 4ix – 4 = 0
⟹ x2 + 4ix + 4i2 = 0 [∵ i2 = – 1]
⟹ x2 + 2ix + 2ix + 4i2 = 0
⟹ x(x + 2i)+2i(x + 2i) = 0
⟹ (x + 2i)(x + 2i) = 0
⟹ x = – 2i, – 2i
Comparing the given equation with the general form
Substituting a and b in,
⟹ – 15 + 8i = (a + bi)2
⟹ –15 + 8i = (a2- b2 + 2abi
⟹a2 - b2 = – 15 and 2abi = 8i
Now (a2 + b2)2 = (a2 - b2)2 + 4a2b2
⟹(a2 + b2)2 = (-15)2 + 64 = 289
⟹ a2 + b2 = 17
Solving a2 - b2 = – 15 and a2 + b2 = 17, we get
a2 = 1 and b2 = 16
⟹ a = ± 1 and b = ± 4
⟹ a = ± 1 and b = ± 4
⟹ a = 1, b = 4 or a = – 1 b = – 4
x2 - x + (1 + i) = 0
x2 - x + (1 + i) = 0
x2 - ix -(1 - i)x + i(1 - i) = 0
(x - i)(x - (1 - i)) = 0
x = i, 1 - i
We will apply discriminate rule on ax2 + bx + c = 0,
Now,
ix2 - x + 12i = 0
We will apply discriminate rule on ax2 + bx + c = 0,
Now,
Get your questions answered by the expert for free