Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
sin 45° sin 30° + cos 45° cos 30°
Sin 45°sin 30° + cos 45° cos 30° [1]
We know that by trigonometric ratios we have,
Substituting the values in equation 1, we get
sin 60° cos 30° + cos 60° sin 30°
sin 60° cos 30° + cos 60° sin 30° [1]
By trigonometric ratios we have,
cos 60° cos 45° – sin 60° sin 45°
cos 60° cos 45° – sin 60° sin 45° [1]
sin230° + sin245° + sin260° + sin290°
sin230° + sin245° + sin260° + sin290° [1]
cos230° + cos245° + cos260° + cos290°
cos230° + cos245° + cos260° + cos290° [1]
tan230° + tan245° + tan260°
tan230° + tan245° + tan260° [1]
2 sin230° − 3 cos245° + tan260°
2sin230° − 3cos245° + tan260° [1]
sin2 30° cos245°+ 4 tan230°+ 1/2sin2 90° - 2 cos2 90°+ 1/24 cos20°
sin2 30° cos245°+ 4 tan230°+ 1/2sin2 90° - 2 cos2 90°+ 1/24 cos20° [1]
4(sin460° + cos430°) − 3(tan260° − tan245°) + 5cos245°
4(sin460° + cos430°) − 3(tan260° − tan245°) + 5cos245° [1]
Question: 10
(cosec2 45° sec2 30°) (sin230° + 4 cot245° − sec2 60°)
(cosec245° sec230°)(sin230° + 4 cot245° − sec260°) [1]
cosec3 30°cos 60° tan3 45° sin2 90° sec2 45°cot 30°
= cosec3 30°cos 60° tan3 45° sin2 90° sec2 45° cot 30°
cot230° − 2cos260° − 3/4 sec245° – 4 sec230°
= cot230° − 2cos260° − 3/4 sec245° – 4 sec230°
(cos 0° + sin 45° + sin 30°) (sin 90∘ − cos 45° + cos 60°)
Given, (cos 0° + sin 45° + sin 30°) (sin 90∘ − cos 45° + cos 60°)
Given,
4(sin430° + cos260°) − 3(cos245° − sin290°) − sin260°
= 3 + 2 + 4
= 9
2 sin 3x = √3
⟹ sin 3x = √3/2
⟹ sin 3x = sin 60°
⟹ 3x = 60°
⟹ x = 20°
x/2 = 30°
x = 60°
√3 sin x = cos x
√3 tan x = 1
tan x = 1/√3
∴ tan x = tan45°
x = 45°
tan x = sin 45° cos 45° + sin 30°
tan x = 1
tan x = 45°
√3 tan 2x = cos 60°+ sin 45°cos 45°
2x = 30°
x = 15°
cos 2x = cos 60° cos 30° + sin 60° sin 30°
If θ = 30°, verify
(iv) cos 3θ = 4cos3θ − 3cos θ cos 3θ = 4 cos3 θ – 3 cos θ
Substitute θ = 30° θ = 30° in equation (i)
Therefore, LHS = RHS
Substitute θ = 30° θ = 30°
Therefore, LHS = RHS.
Substitute θ = 30°θ = 30°
(iv) cos 3θ = 4cos3θ − 3cos θ cos 3θ = 4 cos3θ – 3 cos θ
Solution:
LHS = cos 3θ
Substitute θ = 30°
= cos 3(30°) = cos 90°
= 0
RHS = 4 cos3θ – 3 cos θ
= 4 cos330° − 3 cos 30°
If A = B = 60°. Verify
(i) cos (A – B) = cos A cos B + sin A sin B
cos (A – B) = cos A cos B + sin A sin B … (i)
Substitute A and B in (i)
⟹ cos (60° – 60°) = cos 60° cos 60° + sin 60° sin 60°
⟹ 1 = 1
(ii) Substitute A and B in (i)
⟹ sin (60° – 60°) = sin 60° cos 60° – cos 60° sin 60°
⟹ sin0° = 0
⟹ 0 = 0
A = 60°, B = 60° we get,
tan 0° = 0
0 = 0
If A = 30°, B = 60° verify:
(i) Sin (A + B) = Sin A cos B + Cos A Sin B
(ii) Cos (A + B) = Cos A Cos B – Sin A Sin B
(i) A = 30°, B = 60° we get
Sin (30° + 60°) = Sin 30° Cos 60° + Cos 30° Sin 60°
Sin (90°) = 1 ⟹ 1 = 1
A = 30°, B = 60° we get
Cos (30° + 60°) = Cos 30° Cos 60° – Sin 30° Sin 60°
If sin(A + B) = 1 and cos(A - B) = 1, 0° < A + B ≤ 90°, A ≥ B find A and B.
sin(A + B) = 1 this can be written as sin (A + B) = sin (90°) sin (90°)
cos(A - B) = 1 this can be written as cos (A - B) = cos (0°) cos (0°)
⟹ A + B = 90°
A – B = 0°
2A = 90°
A = 90°/2
A = 45°
Substitute A value in A – B = 0°
45°– B = 0°
B = 45°
Hence, the value of A = 45°and B = 45°
If tan (A - B) = 1/√3 and tan (A + B) = √3, 0°<A + B ≤ 90°, A > B find A and B
A – B = 30° ... 1
A + B = 60° ... 2
Solve equations 1 and 2
A + B = 30°
A – B = 60°
Substitute the value of A in equation 1
45°+ B = 30°
B = 30° – 45°
B = 15°
The value of A = 45°and B = 15°
If sin (A - B) = 1/2 and cos (A + B) = 1/2, 0°<A + B ≤ 90°, A < B. find A and B.
A + B = 60°
A – B = 30°
Substitute the value of A in equation 2
45°+ B = 60°
B = 60° – 45°
In a Δ ABC right angled triangle at B, ∠A = ∠C. Find the values of:
1. sin A cos C + cos A sin C
2. sin A sin B + cos A cos B
1. since, it is given as ∠A = ∠C
the value of A and C is 45°, the value of angle B is 90°
because the sum of angles of triangle is 180°
⟹ sin 45° cos 45° + cos 45° sin 45°
⟹ 1
The value of sin A cos C + cos A sin C is 1
2. since, it is given as ∠A = ∠C
⟹ sin 45°sin 90° + cos 45°sin 90°
The value of sin A sin B + cos A cos B is 1/√2
Find the acute angle A and B, if sin (A + 2B) = √3/2 and cos(A + 4B) = 0, A > B.
A + 2B = 60° ... 1
Cos (A + 4B) = 0
A + 4B = sin−1(90) sin−1(90)
A + 4B = 90° ... 2
2B = 30°
B = 30°/2
Substitute B value in equation 2
A + 4B = 90°
A + 4(15°) = 90°
A + 60° = 90°
A = 90° – 60°
A = 30°
The value of A = 30° and B = 15°
In ΔPQR, right angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠ P and ∠ R.
In ΔPQR, right angled at Q, PQ = 3 cm and PR = 6 cm
By Pythagoras theorem,
PR2 = PQ2 + QR2
⟹ 62 = 32 + QR2
⟹ QR2 = 36 – 9
⟹ QR = √27
⟹ QR = 3√3
sin R = 3/6 = 1/2 = sin30°
∠R = 30°
As we know, Sum of angles in a triangle = 180
∠P + ∠Q + ∠R = 180°
⟹ ∠P + 90° + 30° = 180°
⟹ ∠P = 180° – 120°
⟹ ∠P = 60°
Therefore, ∠R = 30°
And, ∠P = 60°
If sin (A – B) = sin A cos B – cos A sin B and cos (A – B) = cos A cos B + sin A sin B, find the values of sin 15 and cos 15.
sin (A – B) = sin A cos B – cos A sin B
And, cos (A – B) = cos A cos B + sin A sin B
We need to find, sin 15 and cos 15.
Let A = 45 and B = 30
sin 15 = sin (45- 30) = sin 45 cos 30 – cos 45 sin 30
cos 15 = cos (45- 30) = cos 45 cos 30 – sin 45 sin 30
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15 units. Find the remaining angles and sides.
Sin 60°= x/15
cos 60°= x/15
x = 7.5 units
In ΔABC is a right triangle such that ∠C = 90°, ∠A = 45°and BC = 7 units. Find the remaining angles and sides.
Here, ∠C = 90° and ∠A = 45°
We know that,
∠A + ∠B + ∠C = 180°
⟹ 45°+ 90° + ∠C = 180°
⟹ 135° + ∠C = 180°
⟹ ∠C = 180° – 135°
⟹ ∠C = 45°
The value of the remaining angle C is 45°
Now, we need to find the sides x and y here,
y =7√2 units
x = 7 units
the value of x = 7 units and y = √2 units
In a rectangle ABCD, AB = 20 cm, ∠BAC = 60°, calculate side BC and diagonals AC and BD.
Let AC = x cm and CB = y cm
⇒ x = 40 cm = AC
Similarly BD = 40 cm
Now,
If A & B are acute angles such that tan A = 1/2 tan B = 1/3 and tan (A + B) =find A+B.
(A + B) = Tan-1 (1)
(A + B) = 45°
Prove that: (√3 -1) (3 – cot 30°) = tan360° - 2 sin 60°
R.H.S ⟹ tan3 60° - 2 sin 60°
L.H.S = R.H.S
Hence prove
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Chapter 5: Trigonometric Ratios Exercise –...