sin 45° sin 30° + cos 45° cos 30°
Sin 45°sin 30° + cos 45° cos 30° [1]
We know that by trigonometric ratios we have,
Substituting the values in equation 1, we get
sin 60° cos 30° + cos 60° sin 30°
sin 60° cos 30° + cos 60° sin 30° [1]
By trigonometric ratios we have,
Substituting the values in equation 1, we get
cos 60° cos 45° – sin 60° sin 45°
cos 60° cos 45° – sin 60° sin 45° [1]
We know that by trigonometric ratios we have,
Substituting the values in equation 1, we get
sin230° + sin245° + sin260° + sin290°
sin230° + sin245° + sin260° + sin290° [1]
We know that by trigonometric ratios we have,
Substituting the values in equation 1, we get
cos230° + cos245° + cos260° + cos290°
cos230° + cos245° + cos260° + cos290° [1]
We know that by trigonometric ratios we have,
Substituting the values in equation 1, we get
tan230° + tan245° + tan260°
tan230° + tan245° + tan260° [1]
We know that by trigonometric ratios we have,
Substituting the values in equation 1, we get
2 sin230° − 3 cos245° + tan260°
2sin230° − 3cos245° + tan260° [1]
We know that by trigonometric ratios we have,
Substituting the values in equation 1, we get
sin2 30° cos245°+ 4 tan230°+ 1/2sin2 90° - 2 cos2 90°+ 1/24 cos20°
sin2 30° cos245°+ 4 tan230°+ 1/2sin2 90° - 2 cos2 90°+ 1/24 cos20° [1]
We know that by trigonometric ratios we have,
Substituting the values in equation 1, we get
4(sin460° + cos430°) − 3(tan260° − tan245°) + 5cos245°
4(sin460° + cos430°) − 3(tan260° − tan245°) + 5cos245° [1]
We know that by trigonometric ratios we have,
Substituting the values in equation 1, we get
Question: 10
(cosec2 45° sec2 30°) (sin230° + 4 cot245° − sec2 60°)
(cosec245° sec230°)(sin230° + 4 cot245° − sec260°) [1]
We know that by trigonometric ratios we have,
Substituting the values in equation 1, we get
cosec3 30°cos 60° tan3 45° sin2 90° sec2 45°cot 30°
= cosec3 30°cos 60° tan3 45° sin2 90° sec2 45° cot 30°
cot230° − 2cos260° − 3/4 sec245° – 4 sec230°
= cot230° − 2cos260° − 3/4 sec245° – 4 sec230°
(cos 0° + sin 45° + sin 30°) (sin 90∘ − cos 45° + cos 60°)
Given, (cos 0° + sin 45° + sin 30°) (sin 90∘ − cos 45° + cos 60°)
Given,
Given,
4(sin430° + cos260°) − 3(cos245° − sin290°) − sin260°
Given,
4(sin430° + cos260°) − 3(cos245° − sin290°) − sin260°
Given,
= 3 + 2 + 4
= 9
Given,
2 sin 3x = √3
Given,
2 sin 3x = √3
⟹ sin 3x = √3/2
⟹ sin 3x = sin 60°
⟹ 3x = 60°
⟹ x = 20°
x/2 = 30°
x = 60°
√3 sin x = cos x
√3 tan x = 1
tan x = 1/√3
∴ tan x = tan45°
x = 45°
tan x = sin 45° cos 45° + sin 30°
tan x = 1
tan x = 45°
x = 45°
√3 tan 2x = cos 60°+ sin 45°cos 45°
2x = 30°
x = 15°
cos 2x = cos 60° cos 30° + sin 60° sin 30°
2x = 30°
x = 15°
If θ = 30°, verify
(iv) cos 3θ = 4cos3θ − 3cos θ cos 3θ = 4 cos3 θ – 3 cos θ
Substitute θ = 30° θ = 30° in equation (i)
Therefore, LHS = RHS
Substitute θ = 30° θ = 30°
Therefore, LHS = RHS.
Substitute θ = 30°θ = 30°
Therefore, LHS = RHS
(iv) cos 3θ = 4cos3θ − 3cos θ cos 3θ = 4 cos3θ – 3 cos θ
Solution:
LHS = cos 3θ
Substitute θ = 30°
= cos 3(30°) = cos 90°
= 0
RHS = 4 cos3θ – 3 cos θ
= 4 cos330° − 3 cos 30°
= 0
Therefore, LHS = RHS.
If A = B = 60°. Verify
(i) cos (A – B) = cos A cos B + sin A sin B
cos (A – B) = cos A cos B + sin A sin B … (i)
Substitute A and B in (i)
⟹ cos (60° – 60°) = cos 60° cos 60° + sin 60° sin 60°
⟹ 1 = 1
Therefore, LHS = RHS
(ii) Substitute A and B in (i)
⟹ sin (60° – 60°) = sin 60° cos 60° – cos 60° sin 60°
⟹ sin0° = 0
⟹ 0 = 0
Therefore, LHS = RHS
A = 60°, B = 60° we get,
tan 0° = 0
0 = 0
Therefore, LHS = RHS
If A = 30°, B = 60° verify:
(i) Sin (A + B) = Sin A cos B + Cos A Sin B
(ii) Cos (A + B) = Cos A Cos B – Sin A Sin B
(i) A = 30°, B = 60° we get
Sin (30° + 60°) = Sin 30° Cos 60° + Cos 30° Sin 60°
Sin (90°) = 1 ⟹ 1 = 1
Therefore, LHS = RHS
(ii) Cos (A + B) = Cos A Cos B – Sin A Sin B
A = 30°, B = 60° we get
Cos (30° + 60°) = Cos 30° Cos 60° – Sin 30° Sin 60°
0 = 0
Therefore, LHS = RHS
If sin(A + B) = 1 and cos(A - B) = 1, 0° < A + B ≤ 90°, A ≥ B find A and B.
Given,
sin(A + B) = 1 this can be written as sin (A + B) = sin (90°) sin (90°)
cos(A - B) = 1 this can be written as cos (A - B) = cos (0°) cos (0°)
⟹ A + B = 90°
A – B = 0°
2A = 90°
A = 90°/2
A = 45°
Substitute A value in A – B = 0°
45°– B = 0°
B = 45°
Hence, the value of A = 45°and B = 45°
If tan (A - B) = 1/√3 and tan (A + B) = √3, 0°<A + B ≤ 90°, A > B find A and B
Given,
A – B = 30° ... 1
A + B = 60° ... 2
Solve equations 1 and 2
A + B = 30°
A – B = 60°
2A = 90°
A = 90°/2
A = 45°
Substitute the value of A in equation 1
45°+ B = 30°
B = 30° – 45°
B = 15°
The value of A = 45°and B = 15°
If sin (A - B) = 1/2 and cos (A + B) = 1/2, 0°<A + B ≤ 90°, A < B. find A and B.
Given,
A + B = 60° ... 2
Solve equations 1 and 2
A + B = 60°
A – B = 30°
2A = 90°
A = 90°/2
A = 45°
Substitute the value of A in equation 2
45°+ B = 60°
B = 60° – 45°
B = 15°
The value of A = 45°and B = 15°
In a Δ ABC right angled triangle at B, ∠A = ∠C. Find the values of:
1. sin A cos C + cos A sin C
2. sin A sin B + cos A cos B
1. since, it is given as ∠A = ∠C
the value of A and C is 45°, the value of angle B is 90°
because the sum of angles of triangle is 180°
⟹ sin 45° cos 45° + cos 45° sin 45°
⟹ 1
The value of sin A cos C + cos A sin C is 1
2. since, it is given as ∠A = ∠C
the value of A and C is 45°, the value of angle B is 90°
because the sum of angles of triangle is 180°
⟹ sin 45°sin 90° + cos 45°sin 90°
The value of sin A sin B + cos A cos B is 1/√2
Find the acute angle A and B, if sin (A + 2B) = √3/2 and cos(A + 4B) = 0, A > B.
Given,
A + 2B = 60° ... 1
Cos (A + 4B) = 0
A + 4B = sin−1(90) sin−1(90)
A + 4B = 90° ... 2
Solve equations 1 and 2
2B = 30°
B = 30°/2
B = 15°
Substitute B value in equation 2
A + 4B = 90°
A + 4(15°) = 90°
A + 60° = 90°
A = 90° – 60°
A = 30°
The value of A = 30° and B = 15°
In ΔPQR, right angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠ P and ∠ R.
In ΔPQR, right angled at Q, PQ = 3 cm and PR = 6 cm
By Pythagoras theorem,
PR2 = PQ2 + QR2
⟹ 62 = 32 + QR2
⟹ QR2 = 36 – 9
⟹ QR = √27
⟹ QR = 3√3
sin R = 3/6 = 1/2 = sin30°
∠R = 30°
As we know, Sum of angles in a triangle = 180
∠P + ∠Q + ∠R = 180°
⟹ ∠P + 90° + 30° = 180°
⟹ ∠P = 180° – 120°
⟹ ∠P = 60°
Therefore, ∠R = 30°
And, ∠P = 60°
If sin (A – B) = sin A cos B – cos A sin B and cos (A – B) = cos A cos B + sin A sin B, find the values of sin 15 and cos 15.
Given,
sin (A – B) = sin A cos B – cos A sin B
And, cos (A – B) = cos A cos B + sin A sin B
We need to find, sin 15 and cos 15.
Let A = 45 and B = 30
sin 15 = sin (45- 30) = sin 45 cos 30 – cos 45 sin 30
cos 15 = cos (45- 30) = cos 45 cos 30 – sin 45 sin 30
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15 units. Find the remaining angles and sides.
Sin 60°= x/15
cos 60°= x/15
x = 7.5 units
In ΔABC is a right triangle such that ∠C = 90°, ∠A = 45°and BC = 7 units. Find the remaining angles and sides.
Here, ∠C = 90° and ∠A = 45°
We know that,
∠A + ∠B + ∠C = 180°
⟹ 45°+ 90° + ∠C = 180°
⟹ 135° + ∠C = 180°
⟹ ∠C = 180° – 135°
⟹ ∠C = 45°
The value of the remaining angle C is 45°
Now, we need to find the sides x and y here,
y =7√2 units
x = 7 units
the value of x = 7 units and y = √2 units
In a rectangle ABCD, AB = 20 cm, ∠BAC = 60°, calculate side BC and diagonals AC and BD.
Let AC = x cm and CB = y cm
⇒ x = 40 cm = AC
Similarly BD = 40 cm
Now,
If A & B are acute angles such that tan A = 1/2 tan B = 1/3 and tan (A + B) =find A+B.
(A + B) = Tan-1 (1)
(A + B) = 45°
Prove that: (√3 -1) (3 – cot 30°) = tan360° - 2 sin 60°
R.H.S ⟹ tan3 60° - 2 sin 60°
L.H.S = R.H.S
Hence prove