Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing f(x) by g(x) in each of the following:
(i) f(x) = x3 – 6x2 + 11x – 6, g(x) = x2 + x + 1
(ii) f(x) = 10x4 + 17x3 – 62x2 + 30x – 105, g(x) = 2x2 + 7x + 1
(iii) f(x) = 4x3 + 8x2 + 8x + 7, g(x) = 2x2 – x + 1
(iv) f(x) = 15x3 – 20x2 + 13x – 12, g(x) = x2 – 2x + 2
(i) f(x) = x3 – 6x2 + 11x – 6 and g(x) = x2 + x + 1
Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm:
(i) g(t) = t2 – 3; f(t) = 2t4 + 3t3 – 2t2 – 9t – 12
(ii) g(x) = x2 – 3x + 1; f(x) = x5 – 4x3 + x2 + 3x + 1
(iii) g(x) = 2x2 – x + 3; f(x) = 6x5 − x4 + 4x3 – 5x2 – x – 15
g(t) = t2 – 3g(t) = t2 – 3 f(t) = 2t4 + 3t3 – 2t2 – 9t Therefore, g(t) is the factor of f(t).
g(x) = x2 – 3x + 1 g(x) = x2 – 3x + 1 f(x) = x5 – 4x3 + x2 + 3x + 1.Therefore, g(x) is not the factor of f(x).
g(x) = 2x2 – x + 3 g(x) = 2x2 – x + 3 f(x) = 6x5 − x4 + 4x3 – 5x2 – x – 15
Obtain all zeroes of the polynomial f(x) = f(x) = 2x4 + x3 – 14x2 – 19x – 6, if two of its zeroes are -2 and -1.
f(x) = 2x4 + x3 – 14x2 – 19x – 6
If the two zeroes of the polynomial are -2 and -1, then its factors are (x + 2) and (x + 1)
(x + 2)(x + 1) = x2 + x + 2x + 2 = x2 + 3x + 2
f(x) = 2x4 + x3 – 14x2 – 19x – 6 = (2x2 – 5x – 3)(x2 + 3x + 2)
= (2x + 1)(x – 3)(x + 2)(x + 1)
Therefore, zeroes of the polynomial = - 1/2, 3, -2 , -1
Obtain all zeroes of f(x) = x3 + 13x2 + 32x + 20, if one of its zeroes is -2.
f(x) = x3 + 13x2 + 32x + 20
Since, the zero of the polynomial is -2 so, it means its factor is (x + 2).
So, f(x) = x3 + 13x2 + 32x + 20 = (x2 + 11x + 10)(x + 2)
= (x2 + 10x + x + 10)(x + 2)
= (x + 10)(x + 1)(x + 2)
Therefore, the zeroes of the polynomial are – 1, – 10, – 2.
Obtain all zeroes of the polynomial f(x) = x4 – 3x3 – x2 + 9x – 6, if the two of its zeroes are – √3 and √3.
f(x) = x4 – 3x3 – x2 + 9x – 6 Since, two of the zeroes of polynomial are -√3 and √3 so,(x + √3)(x – √3) = x2– 3x2 – 3
So, f(x) = x4 – 3x2 – x2 + 9x – 6 = (x2 – 3)(x2 – 3x + 2)
= (x + √3)(x – √3)(x2– 2x – 2 + 2)
= (x + √3)(x – √3)(x – 1)(x – 2)
Therefore, the zeroes of the polynomial are - √3, √3, 1, 2.
Obtain all zeroes of the polynomial f(x) = 2x4 – 2x3 – 7x2 + x – 1, if the two of its zeroes are – √(3/2) and √(3/2).
f(x) = 2x4 – 2x3 – 7x2 + x – 1 Since, - √(3/2) and √(3/2) are the zeroes of the polynomial, so the factors are
So, f(x) = 2x4– 2x3–7x2+ x – 1
Therefore, the zeroes of the polynomial = x = -1, 2, -√(3/2) and √(3/2).
Find all the zeroes of the polynomial x4 + x3 – 34x2 – 4x + 120, if the two of its zeroes are 2 and – 2.
x4 + x3 – 34x2 – 4x + 120 Since, the two zeroes of the polynomial given is 2 and – 2 So, factors are (x + 2)(x – 2) = x2 + 2x – 2x – 4 = x2 – 4x2 – 4
So, x4 + x3 – 34x2 – 4x + 120 = (x2 – 4)(x2 + x – 30)
= (x – 2)(x + 2)(x2 + 6x – 5x – 30)
= (x – 2)(x + 2)(x + 6)(x – 5)
Therefore, the zeroes of the polynomial = x = 2, – 2, – 6, 5
Find all the zeroes of the polynomial 2x4 + 7x3 – 19x2 – 14x + 30, if the two of its zeroes are √2 and - √2.
2x4 + 7x3 – 19x2 – 14x + 302 Since, √2 and-√2 are the zeroes of the polynomial given. So, factors are (x + √2) and (x - √2)
= x2+√2x – √2x – 2 = x2 – 2
So, 2x4 + 7x3 – 19x2 – 14x + 30 = (x2 – 2)(2x2 + 7x – 15)
= (2x2+ 10x – 3x – 15)(x + √2)(x – √2)
= (2x – 3)(x + 5)(x + √2)(x – √2)
Therefore, the zeroes of the polynomial is √2,- √2,-5, 3/2.
Find all the zeroes of the polynomial f(x) = 2x3 + x2 – 6x – 3, if two of its zeroes are – √3 and √3.
f(x) = 2x3 + x2 – 6x – 3 Since, -√3 and √3 are the zeroes of the given polynomial So, factors are (x - √3) and (x + √3)
= (x2– √3x + √3x – 3) = (x2 – 3)
So, f(x) = 2x3 + x2 – 6x – 3 = (x2 – 3)(2x + 1)
= (x – √3)(x + √3)(2x + 1)
Therefore, set of zeroes for the given polynomial = √3,– √3, –1/2
Find all the zeroes of the polynomial f(x) = x3 + 3x2 – 2x – 6, if the two of its zeroes are √2 and - √2.
f(x) = x3 + 3x2 – 2x – 6 Since, √2 and -√2 are the two zeroes of the given polynomial. So, factors are (x + √2) and (x - √2)
= x2+ √2x – √2x – 2 = x2 – 2
By division algorithm, we have:
f(x) = x3 + 3x2 – 2x – 6 = (x2 – 2)(x + 3)
= (x – √2)(x + √2)(x + 3)
Therefore, the zeroes of the given polynomial is - √2, √2 and – 3.
What must be added to the polynomial f(x) = x4 + 2x3 – 2x2 + x − 1 so that the resulting polynomial is exactly divisible by g(x) = x2 + 2x − 3.
f(x) = x4 + 2x3 – 2x2 + x − 1
We must add (x – 2) in order to get the resulting polynomial exactly divisible by g(x) = x2 + 2x − 3.
What must be subtracted from the polynomial f(x) = x4 + 2x3 – 13x2 –12x + 21 so that the resulting polynomial is exactly divisible by g(x) = x2 – 4x + 3.
f(x) = x4 + 2x3 – 13x2 – 12x + 21
We must subtract (2x – 3) in order to get the resulting polynomial exactly divisible by g(x) = x2 – 4x + 3.
Given that √2 is a zero of the cubic polynomial f(x) = 6x3+ √2x2– 10x – 4√2, find its other two zeroes.
f(x) = 6x3+√2x2 – 10x – 4√2 Since, √2 is a zero of the cubic polynomial So, factor is (x–√2)
Given that x – √5 is a factor of the cubic polynomialfind all the zeroes of the polynomial.
In the question, it’s given that x – √5 is a factor of the cubic polynomial.
So, the zeroes of the polynomial
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Chapter 2: Polynomials Exercise – 2.1...
Chapter 2: Polynomials Exercise – 2.2...